Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37541763

RESUMO

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Ratos , Animais , Gás de Mostarda/toxicidade , Mesna/farmacologia , Mesna/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Pulmão , Sódio , Substâncias para a Guerra Química/toxicidade
2.
J Pharmacol Exp Ther ; 388(2): 546-559, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914412

RESUMO

Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.


Assuntos
Arsenicais , Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias para a Guerra Química/toxicidade , Irritantes , Pele , Gás de Mostarda/toxicidade , Arsenicais/metabolismo , Arsenicais/farmacologia
3.
J Pharmacol Exp Ther ; 388(2): 560-567, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863486

RESUMO

Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.


Assuntos
Lesão Pulmonar Aguda , Substâncias para a Guerra Química , Fosgênio , Humanos , Pulmão , Cloro/farmacologia , Cloro/toxicidade , Substâncias para a Guerra Química/toxicidade , Fosgênio/metabolismo , Fosgênio/farmacologia , Lesão Pulmonar Aguda/metabolismo , Irritantes
4.
J Pharmacol Exp Ther ; 388(2): 469-483, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37316330

RESUMO

Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Córnea , Substâncias para a Guerra Química/toxicidade , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Dexametasona/farmacologia
5.
J Pharmacol Exp Ther ; 388(2): 518-525, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914413

RESUMO

Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropatia Óptica Tóxica , Córnea , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Resposta a Proteínas não Dobradas
6.
J Pharmacol Exp Ther ; 388(2): 536-545, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37652710

RESUMO

Phosgene oxime (CX), categorized as a vesicating chemical threat agent, causes effects that resemble an urticant or nettle agent. CX is an emerging potential threat agent that can be deployed alone or with other chemical threat agents to enhance their toxic effects. Studies on CX-induced skin toxicity, injury progression, and related biomarkers are largely unknown. To study the physiologic changes, skin clinical lesions and their progression, skin exposure of SKH-1 and C57BL/6 mice was carried out with vapor from 10 µl CX for 0.5-minute or 1.0-minute durations using a designed exposure system for consistent CX vapor exposure. One-minute exposure caused sharp (SKH-1) or sustained (C57BL/6) decrease in respiratory and heart rate, leading to mortality in both mouse strains. Both exposures caused immediate blanching, erythema with erythematous ring (wheel) and edema, and an increase in skin bifold thickness. Necrosis was also observed in the 0.5-minute CX exposure group. Both mouse strains showed comparative skin clinical lesions upon CX exposure; however, skin bifold thickness and erythema remained elevated up to 14 days postexposure in SKH-1 mice but not in C57BL/6 mice. Our data suggest that CX causes immediate changes in the physiologic parameters and gross skin lesions resembling urticaria, which could involve mast cell activation and intense systemic toxicity. This novel study recorded and compared the progression of skin injury to establish clinical biomarkers of CX dermal exposure in both the sexes of two murine strains relevant for skin and systemic injury studies and therapeutic target identification. SIGNIFICANCE STATEMENT: Phosgene oxime (CX), categorized as a vesicating agent, is considered as a potent chemical weapon and is of high military and terrorist threat interest since it produces rapid onset of severe injury as an urticant. However, biomarkers of clinical relevance related to its toxicity and injury progression are not studied. Data from this study provide useful clinical markers of CX skin toxicity in mouse models using a reliable CX exposure system for future mechanistic and efficacy studies.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Fosgênio , Animais , Camundongos , Fosgênio/toxicidade , Modelos Animais de Doenças , Gás de Mostarda/toxicidade , Camundongos Endogâmicos C57BL , Pele , Irritantes/toxicidade , Eritema/induzido quimicamente , Eritema/patologia , Biomarcadores , Oximas/toxicidade , Substâncias para a Guerra Química/toxicidade
7.
J Pharmacol Exp Ther ; 388(2): 526-535, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977813

RESUMO

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Proteína BRCA1 , Proteína Supressora de Tumor p53 , Qualidade de Vida , Proteína BRCA2 , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Reparo do DNA , Dano ao DNA
8.
J Pharmacol Exp Ther ; 388(2): 484-494, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37474260

RESUMO

Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Humanos , Coelhos , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Substâncias para a Guerra Química/toxicidade , Ligantes , Córnea , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Gás de Mostarda/toxicidade , Dexametasona/farmacologia , Dexametasona/uso terapêutico
9.
J Pharmacol Exp Ther ; 388(2): 495-505, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37827703

RESUMO

The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard (NM) cause severe vesicating skin injuries. The pathologic mechanisms for the skin injury following mustard exposure are poorly understood; therefore, no effective countermeasure is available. Previous reports demonstrated the protective activity of carvedilol, a US Food and Drug Administration (FDA)-approved ß-blocker, against UV radiation-induced skin damage. Thus, the current study evaluated the effects of carvedilol on NM-induced skin injuries in vitro and in vivo. In the murine epidermal cell line JB6 Cl 41-5a, ß-blockers with different receptor subtype selectivity were examined. Carvedilol and both of its enantiomers, R- and S-carvedilol, were the only tested ligands statistically reducing NM-induced cytotoxicity. Carvedilol also reduced NM-induced apoptosis and p53 expression. In SKH-1 mice, NM increased epidermal thickness, damaged skin architecture, and induced nuclear factor κB (NF-κB)-related proinflammatory genes as assessed by RT2 Profiler PCR (polymerase chain reaction) Arrays. To model chemical warfare scenario, 30 minutes after exposure to NM, 10 µM carvedilol was applied topically. Twenty-four hours after NM exposure, carvedilol attenuated NM-induced epidermal thickening, Ki-67 expression, a marker of cellular proliferation, and multiple proinflammatory genes. Supporting the in vitro data, the non-ß-blocking R-enantiomer of carvedilol had similar effects as racemic carvedilol, and there was no difference between carvedilol and R-carvedilol in the PCR array data, suggesting that the skin protective effects are independent of the ß-adrenergic receptors. These data suggest that the ß-blocker carvedilol and its enantiomers can be repurposed as countermeasures against mustard-induced skin injuries. SIGNIFICANCE STATEMENT: The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard cause severe vesicating skin injuries for which no effective countermeasure is available. This study evaluated the effects of US Food and Drug Administration (FDA)-approved ß-blocker carvedilol on nitrogen mustard-induced skin injuries to repurpose this cardiovascular drug as a medical countermeasure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Carvedilol/metabolismo , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/farmacologia , Gás de Mostarda/toxicidade , Pele , Antagonistas Adrenérgicos beta/farmacologia
10.
Toxicol Appl Pharmacol ; 483: 116834, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266871

RESUMO

PURPOSE: Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Substâncias para a Guerra Química/toxicidade , Mediadores da Inflamação/metabolismo , Actinas/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Córnea/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Citoesqueleto de Actina/metabolismo , Dexametasona/efeitos adversos
11.
Toxicol Appl Pharmacol ; 486: 116941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677601

RESUMO

Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 µM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 µM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.


Assuntos
Pulmão , Mecloretamina , Animais , Mecloretamina/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Dano ao DNA , Camundongos Endogâmicos C57BL , Relação Dose-Resposta a Droga , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Substâncias para a Guerra Química/toxicidade , Glicólise/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia
12.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513841

RESUMO

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Assuntos
Acetilcisteína , Metabolismo Energético , Lesão Pulmonar , Mecloretamina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Mecloretamina/toxicidade , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Substâncias para a Guerra Química/toxicidade
13.
Exp Eye Res ; 243: 109902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641196

RESUMO

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Assuntos
Dexametasona , Mecloretamina , Nanopartículas , Dexametasona/análogos & derivados , Animais , Mecloretamina/toxicidade , Modelos Animais de Doenças , Lesões da Córnea/prevenção & controle , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/patologia , Lesões da Córnea/tratamento farmacológico , Glucocorticoides , Substâncias para a Guerra Química/toxicidade , Camundongos , Queimaduras Químicas/prevenção & controle , Queimaduras Químicas/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/prevenção & controle , Coelhos , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/metabolismo
14.
Arch Toxicol ; 98(1): 267-275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051368

RESUMO

Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Animais , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Acetilcolinesterase/metabolismo , Compostos Organotiofosforados/toxicidade
15.
Arch Toxicol ; 98(6): 1809-1825, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493428

RESUMO

The idea of this study was the estimation of the theoretical acute toxicity (t-LD50, rat, oral dose) of organophosphorus-based chemical warfare agents from the G-series (n = 12) using different in silico methods. Initially identified in Germany, the G-type nerve agents include potent compounds such as tabun, sarin, and soman. Despite their historical significance, there is a noticeable gap in acute toxicity data for these agents. This study employs qualitative (STopTox and AdmetSAR) and quantitative (TEST; CATMoS; ProTox-II and QSAR Toolbox) in silico methods to predict LD50 values, offering an ethical alternative to animal testing. Additionally, we conducted quantitative extrapolation from animals, and the results of qualitative tests confirmed the acute toxicity potential of these substances and enabled the identification of toxicophoric groups. According to our estimations, the most lethal agents within this category were GV, soman (GD), sarin (GB), thiosarin (GBS), and chlorosarin (GC), with t-LD50 values (oral administration, extrapolated from rat to human) of 0.05 mg/kg bw, 0.08 mg/kg bw, 0.12 mg/kg bw, 0.15 mg/kg bw, and 0.17 mg/kg bw, respectively. On the contrary, compounds with a cycloalkane attached to the phospho-oxygen linkage, specifically methyl cyclosarin and cyclosarin, were found to be the least toxic, with values of 2.28 mg/kg bw and 3.03 mg/kg bw. The findings aim to fill the knowledge gap regarding the acute toxicity of these agents, highlighting the need for modern toxicological methods that align with ethical considerations, next-generation risk assessment (NGRA) and the 3Rs (replacement, reduction and refinement) principles.


Assuntos
Substâncias para a Guerra Química , Simulação por Computador , Compostos Organofosforados , Relação Quantitativa Estrutura-Atividade , Substâncias para a Guerra Química/toxicidade , Animais , Dose Letal Mediana , Compostos Organofosforados/toxicidade , Ratos , Administração Oral , Sarina/toxicidade , Testes de Toxicidade Aguda/métodos , Soman/toxicidade , Medição de Risco/métodos
16.
Arch Toxicol ; 98(3): 791-806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267661

RESUMO

We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Butirilcolinesterase/metabolismo , Espectrometria de Massas em Tandem/métodos , Compostos Organotiofosforados/toxicidade , Compostos Organofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química
17.
Arch Toxicol ; 98(10): 3397-3407, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004640

RESUMO

The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.


Assuntos
Acetilcolinesterase , Substâncias para a Guerra Química , Inibidores da Colinesterase , Reativadores da Colinesterase , Agentes Neurotóxicos , Oximas , Compostos de Piridínio , Oximas/farmacologia , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Compostos de Piridínio/farmacologia , Substâncias para a Guerra Química/toxicidade , Agentes Neurotóxicos/toxicidade , Compostos de Pralidoxima/farmacologia , Compostos Organotiofosforados/toxicidade , Animais , Antídotos/farmacologia
18.
Arch Toxicol ; 98(9): 2937-2952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38789714

RESUMO

Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Agentes Neurotóxicos , Compostos Organotiofosforados , Oximas , Sarina , Animais , Oximas/farmacologia , Oximas/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Ratos , Masculino , Compostos Organotiofosforados/toxicidade , Sarina/toxicidade , Agentes Neurotóxicos/toxicidade , Ratos Wistar , Halogenação , Substâncias para a Guerra Química/toxicidade , Compostos de Piridínio/farmacologia , Estabilidade de Medicamentos
19.
Arch Toxicol ; 98(6): 1859-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555327

RESUMO

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Agentes Neurotóxicos , Compostos Organotiofosforados , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Relação Dose-Resposta a Droga , Células Cultivadas
20.
J Appl Toxicol ; 44(9): 1361-1371, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730557

RESUMO

In a chemical mass casualty incident requiring skin decontamination, dry removal using absorbent materials may be beneficial to enable immediate decontamination. The efficacy of absorbent materials has therefore been evaluated, alone or procedures including both dry and wet decontamination, following skin exposure to two low volatile toxic chemicals using an in vitro human skin penetration model. Additionally, removal using active carbon wipes was evaluated with or without the Dahlgren Decon solution. All dry decontamination procedures resulted in a significantly decreased skin penetration rate of the industrial chemical 2-butoxyethanol compared to the control without decontamination. Wet decontamination following dry absorption significantly improved the efficacy compared to dry removal alone. Dry decontamination post-exposure to the chemical warfare nerve agent VX showed no decontamination efficacy. However, dry and wet decontamination resulted in a decreased agent skin penetration rate during the last hour of the experiment. At -15°C, significantly reduced VX skin penetration rates were demonstrated for both dry decontamination alone and the dry and wet decontamination procedure. The Dahlgren Decon solution significantly reduced the amount of VX penetrating the skin, but the active carbon wipe alone did not impact the skin penetration rate. In conclusion, absorbent materials are beneficial for the removal of low-volatile chemicals from the skin, but the degree of efficacy varies between chemicals. Despite the variability, immediate dry decontamination using available absorbent materials prior to wet decontamination is recommended as a general procedure for skin decontamination. The procedure should also be prioritized in cold-weather conditions to prevent patient hypothermia.


Assuntos
Descontaminação , Absorção Cutânea , Pele , Descontaminação/métodos , Humanos , Pele/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Substâncias para a Guerra Química/toxicidade , Etilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA