Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.720
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Environ Res ; 247: 118158, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224936

RESUMO

Existing wastewater treatment technologies face the key challenge of simultaneously removing emerging contaminants and nutrients from wastewater efficiently, with a simplified technological process and minimized operational costs. In this study, a novel alginate-embedded magnetic biochar-anoxygenic photosynthetic bacteria composite microspheres (CA-MBC-PSB microspheres) was prepared for efficient, cost-effective and one-step removal of antibiotics and NH4+-N from wastewater. Our results demonstrated that the CA-MBC-PSB microspheres removed 97.23% of sulfadiazine (SDZ) within 7 h and 91% of NH4+-N within 12 h, which were 21.23% and 38% higher than those achieved by pure calcium alginate-Rhodopseudomonas palustris microspheres (53% and 45.7%), respectively. The enhanced SDZ and NH4+-N removal were attributed to the enhanced photoheterotrophic metabolism and excretion of extracellular photosensitive active substances from R. Palustris through the photo-bioelectrochemical interaction between R. Palustris and magnetic biochar. The long-term pollutants removal performance of the CA-MBC-PSB microspheres was not deteriorated but continuously improved with increasing ruse cycles with a simultaneous removal efficiency of 99% for SDZ and 92% for NH4+-N after three cycles. The excellent stability and reusability were due to the fact that calcium alginate acts as an encapsulating agent preventing the loss and contamination of R. palustris biomass. The CA-MBC-PSB microspheres also exhibited excellent performance for simultaneous removal of SDZ (89% in 7 h) and NH4+-N (90.7% in 12 h) from the secondary effluent of wastewater treatment plant, indicating the stable and efficient performance of CA-MBC-PSB microspheres in practical wastewater treatment.


Assuntos
Alginatos , Carvão Vegetal , Águas Residuárias , Microesferas , Sulfadiazina , Fenômenos Magnéticos
2.
Environ Res ; 248: 118309, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301763

RESUMO

In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 µmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 µmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln µmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.


Assuntos
Antibacterianos , Sulfadiazina , Argila , Adsorção , Tunísia
3.
Environ Res ; 256: 119225, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797461

RESUMO

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.


Assuntos
Antibacterianos , Biodegradação Ambiental , Chlorella , Microalgas , Sulfadiazina , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Águas Residuárias/química
4.
Blood Purif ; 53(5): 386-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194932

RESUMO

INTRODUCTION: Insufficient withdrawal duration of antithrombotics leads to excessive bleeding after major surgery. We hypothesize that intraoperative hemoadsorption (HA) can reduce postoperative allogeneic transfusion requirements and excessive bleeding events (EBE), without an increase in ischemic/thromboembolic events (ITE) in patients who have taken antithrombotics and undergone nonelective cardiac surgery. METHODS: A total of 460 patients admitted to our hospital from 2018 to 2022 were included in this study and divided into two groups: HA and non-HA. Because of the risk of bias due to differences in antithrombotic type, withdrawal duration, or basic coagulation function, propensity score matching was used for analyses. RESULTS: Out of 154 cases in the HA group, 144 pairs were successfully matched. No HA safety events such as hemolysis, hypotension, or device failure occurred. After matching, the two groups were found to be comparable in preoperative antithrombotic type, withdrawal duration, platelets and coagulation function, and demographic and perioperative characteristics. Although the HA group did not have a reduced incidence of EBE, this group exhibited significant decreases in the transfusion rate and volume, the incidence of ITE, acute kidney injury, and central nervous system injury. CONCLUSIONS: For patients who have undergone nonelective cardiac surgery and taken antithrombotics, HA can simply and safely rebalance the postoperative coagulation system and have associations with reduced transfusion and postoperative ITE.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Fibrinolíticos , Humanos , Fibrinolíticos/uso terapêutico , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Transfusão de Sangue , Hemorragia/etiologia , Incidência , Sulfadiazina , Estudos Retrospectivos
5.
J Wound Care ; 33(Sup2a): xiv-xix, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324421

RESUMO

OBJECTIVE: Thermal burn is a serious cause of morbidity and mortality that affects millions of people worldwide. The aim of this experimental study was to investigate the efficacy of Arnebia euchroma (AE) to treat burn wounds in a rat model. METHOD: A total of 80 male rats (200-250g) were shaved over the back of the neck (2×3cm2) and a second-degree burn wound was induced at this site under general anaesthesia. The rats were then randomly assigned to one of four groups (each n=20) and the burns were treated daily for 14 days as follows: (1) dressed with animal fat; (2) dressed with sulfadiazine; (3) dressed with a mixture of AE and animal fat; (4) no treatment (control). Five rats from each group were sacrificed on days 3, 5, 9 and 14 post-burn and the wounds were evaluated histologically and immunohistochemically for the expression of interleukin (IL)-1 and IL-6. RESULTS: There was a significant increase at day 3 and decrease on day 5 samples for the expression of IL-1 in the AE plus fat group and IL-6 in the AE plus fat and sulfadiazine groups, compared to the control and fat treatment groups, respectively. Both AE plus fat and sulfadiazine treatments reduced inflammation and granulation tissue formation by day 5 post-burn, while re-epithelialisation commenced by day 9 post-burn. In addition, burns treated with AE plus fat exhibited keratinised epidermis, associated with regular collagen fibres, compared to moderately dense collagen fibres without vascularisation in the sulfadiazine group. CONCLUSION: These findings suggested that AE plus fat was superior to sulfadiazine in enhancing burn wound healing in rats.


Assuntos
Boraginaceae , Sulfadiazina , Humanos , Ratos , Masculino , Animais , Sulfadiazina/farmacologia , Interleucina-6/farmacologia , Cicatrização , Colágeno/farmacologia , Sulfadiazina de Prata/farmacologia , Sulfadiazina de Prata/uso terapêutico
6.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612744

RESUMO

The mission of this review is to identify immune-damaging participants involved in antiviral immunoinflammatory lesions. We argue these could be targeted and their activity changed selectively by maneuvers that, at the same time, may not diminish the impact of components that help resolve lesions. Ideally, we need to identify therapeutic approaches that can reverse ongoing lesions that lack unwanted side effects and are affordable to use. By understanding the delicate balance between immune responses that cause tissue damage and those that aid in resolution, novel strategies can be developed to target detrimental immune components while preserving the beneficial ones. Some strategies involve rebalancing the participation of immune components using various approaches, such as removing or blocking proinflammatory T cell products, expanding regulatory cells, restoring lost protective cell function, using monoclonal antibodies (moAb) to counteract inhibitory molecules, and exploiting metabolic differences between inflammatory and immuno-protective responses. These strategies can help reverse ongoing viral infections. We explain various approaches, from model studies and some clinical evidence, that achieve innate and adaptive immune rebalancing, offering insights into potential applications for controlling chronic viral-induced lesions.


Assuntos
Anticorpos Monoclonais , Pirimetamina , Humanos , Anticorpos Monoclonais/uso terapêutico , Sulfadiazina
7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928394

RESUMO

Sulfonamides can be effectively removed from wastewater through a photocatalytic process. However, the mineralization achieved by this method is a long-term and expensive process. The effect of shortening the photocatalytic process is the partial degradation and formation of intermediates. The purpose of this study was to evaluate the sensitivity and transformation of photocatalytic reaction intermediates in aerobic biological processes. Sulfadiazine and sulfamethoxazole solutions were used in the study, which were irradiated in the presence of a TiO2-P25 catalyst. The resulting solutions were then aerated after the addition of river water or activated sludge suspension from a commercial wastewater treatment plant. The reaction kinetics were determined and fifteen products of photocatalytic degradation of sulfonamides were identified. Most of these products were further transformed in the presence of activated sludge suspension or in water taken from the river. They may have been decomposed into other organic and inorganic compounds. The formation of biologically inactive acyl derivatives was observed in the biological process. However, compounds that are more toxic to aquatic organisms than the initial drugs can also be formed. After 28 days, the sulfamethoxazole concentration in the presence of activated sludge was reduced by 66 ± 7%. Sulfadiazine was practically non-biodegradable under the conditions used. The presented results confirm the advisability of using photocatalysis as a process preceding biodegradation.


Assuntos
Biodegradação Ambiental , Sulfonamidas , Poluentes Químicos da Água , Cinética , Sulfonamidas/química , Sulfonamidas/metabolismo , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Titânio/química , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Fotólise , Águas Residuárias/química , Esgotos/química , Sulfadiazina/química , Sulfadiazina/metabolismo , Purificação da Água/métodos
8.
J Environ Manage ; 365: 121607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941847

RESUMO

The development of a natural pyrite/peroxymonosulfate (PMS) system for the removal of antibiotic contamination from water represented an economic and green sustainable strategy. Yet, a noteworthy knowledge gap remained considering the underlying reaction mechanism of the system, particularly in relation to its pH sensitivity. Herein, this paper investigated the impacts of critical reaction parameters and initial pH levels on the degradation of sulfadiazine (SDZ, 3 mg/L) in the pyrite/PMS system, and elucidated the pH dependence of the reaction mechanism. Results showed that under optimal conditions, SDZ could be completely degraded within 5 min at a broad pH range of 3.0-9.0, with a pseudo-first-order reaction rate of >1.0 min-1. The low or high PMS doses could lower degradation rates of SDZ through the decreased levels of active species, while the amount of pyrite was positively correlated with the removal rate of SDZ. The diminutive concentrations of anions exerted minor impacts on the decomposition of SDZ within the pyrite PMS system. Mechanistic results demonstrated that the augmentation of pH levels facilitated the transition from the non-radical to the radical pathway within the natural pyrite/PMS system, while concurrently amplifying the role of •OH in the degradation process of SDZ. This could be attributed to the change in interface electrostatic repulsion induced by pH fluctuations, as well as the mutual transformation between active species. The stable presence of the relative content of Fe(II) in the used pyrite was ensured owing to the reduced sulfur species acting as electron donors, providing the pyrite/PMS system excellent reusability. This paper sheds light on the mechanism regulation of efficient removal of organic pollutants through pyrite PMS systems, contributing to practical application.


Assuntos
Sulfadiazina , Sulfadiazina/química , Concentração de Íons de Hidrogênio , Ferro/química , Sulfetos/química , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Peróxidos
9.
Environ Geochem Health ; 46(7): 257, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884845

RESUMO

Gold nanoparticles (AuNPs) were extensively employed for in-situ detection sulfadiazine (SDZ) residues, yet current synthesis methods suffer from complex procedures, reagent pollution of the environment, and low particle quality. This study presents a novel synthesis method using discarded longan seed extract as a reducing agent to synthesized high-quality AuNPs, and then can be used for in-situ SDZ detection. Response surface methodology (RSM) was employed to optimize synthesis parameters, which resulted in five optimal combinations that enhanced the flexibility of synthesis. These AuNPs, ranging in size from 18.26 nm to 33.8 nm with zeta potentials from - 29.5 mV to - 14.3 mV, were successfully loaded with functional groups from longan seed extract. In the detection of SDZ, the colorimetric aptasensor demonstrated excellent sensitivity and selectivity over other antibiotics with a limit of detection and quantification at 70.98 ng·mL-1 and 236.59 ng·mL-1 in the concentration range of 200-800 ng·mL-1. Recoveries of spiked SDZ samples ranged from 97.90% to 106.7%, with RSD values below 9.25%. Meanwhile, the aptasensor exhibited exceptional diagnostic efficacy (AUC: 0.976) compared to UV absorption methods in the ROC evaluation. In conclusion, this study highlights the potential of using AuNPs synthesized from longan seed extract coupled with aptamer technology as a straightforward detection method for SDZ in river water, offering promising applications in environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Colorimetria , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Rios , Sementes , Sulfadiazina , Poluentes Químicos da Água , Ouro/química , Nanopartículas Metálicas/química , Sementes/química , Colorimetria/métodos , Rios/química , Poluentes Químicos da Água/análise , Extratos Vegetais/química , Sulfadiazina/análise , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos
10.
Med J Malaysia ; 79(2): 203-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553927

RESUMO

A balanced and diverse skin microbiome is pivotal for healthy skin. Dysregulation of the skin microbiome could disrupt the skin barrier function and result in the development of atopic dermatitis (AD), a common chronic and relapsing inflammatory skin disorder. Given the role that the skin microbiome plays in the initiation and maintenance of AD, maintaining a healthy skin microbiome is crucial for effective disease management. Specifically, current guidelines recommend emollients as the treatment mainstay in maintaining a functional skin barrier across disease severity. Emollient 'plus' or therapeutic moisturisers have recently emerged as the next-generation emollients that specifically aim to rebalance the skin microbiome and subsequently improve AD lesions. This article provides a quick overview of an emollient 'plus' or therapeutic moisturiser, discussing the clinical efficacy and tolerability of Lipikar Baume AP+M as a companion in AD management.


Assuntos
Dermatite Atópica , Microbiota , Humanos , Dermatite Atópica/tratamento farmacológico , Emolientes/uso terapêutico , Pele/patologia , Resultado do Tratamento , Sulfadiazina/uso terapêutico
11.
Biol Lett ; 19(9): 20230306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37752852

RESUMO

Growing evidence shows that non-gametic components released by both males and females can significantly drive sperm competition outcomes. Seminal fluid (SF) was shown to influence paternity success by affecting rival males' sperm performance, and, in some species with male alternative reproductive tactics, to selectively decrease the fertilization success of males of the opposite tactic. Female reproductive fluid (FRF) has been proven to differentially influence ejaculates of different males and bias fertilization towards specific partners. Whether, and with what outcome, these two processes can intersect to influence sperm competition is still unknown. Here we explore this scenario in the grass goby (Zosterisessor ophiocephalus), a fish with territorial-sneaker reproductive tactics, where sneaker males can exploit the territorials' SF while penalizing territorial sperm performance with their own fluid. To test whether FRF can rebalance the ejaculate competition in favour of territorial males, we used in vitro fertilization with a SF mixture (territorial + sneaker), using increasing concentrations of FRF, to simulate the natural conditions that ejaculates encounter towards the eggs. Our findings revealed a differential effect of FRF on the different tactics' fertilization success, favouring territorial ejaculates, possibly through an attenuation of the detrimental effects of sneaker SF, and enabling females to regain control over the fertilization process.


Assuntos
Líquidos Corporais , Sêmen , Masculino , Feminino , Animais , Reprodução , Espermatozoides , Sulfadiazina
12.
J Biochem Mol Toxicol ; 37(10): e23467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466109

RESUMO

Multidrug resistance (MDR) causes difficulties in the treatment of infections and cancer. Research and development studies have become increasingly important for the strategy of preventing MDR. There is a need for new multitarget drug research and advancement to reduce the development of drug resistance in drug-drug interactions and reduce cost and toxic effects. This study aimed to determine the effects of multi-target triazene compounds on antibacterial, antifungal, antiviral, cytotoxic, and larvicidal activities were investigated in vitro. A series of 12 novel of 1,3-diaryltriazene-substituted sulfadiazine (SDZ) derivatives were synthesized, and the obtained pure products characterized in detail by spectroscopic and analytic methods (FT-IR, 1 H-NMR, 13 C-NMR, and melting points). The antibacterial and antifungal activities of these derivatives (AH1-12) were determined by broth microdilution method. All derivatives have been evaluated in cell-based assays for cytotoxic and antiviral activities against Modified Vaccinia Virus Ankara. The larvicidal efficacy of these chemical compounds was also investigated by using Lucilia sericata (L. sericata) larvae. Twelve 1,3-diaryltriazene-substituted SDZ derivatives (AH1-12) were designed and developed as potent multitargeted compounds. Among them, the AH1 derivative showed the most antibacterial and antifungal activity. Besides, synthesized derivatives AH2, AH3, AH5, and AH7 showed higher antiviral activity than SDZ. All synthesized derivatives showed higher cytotoxic activity than SDZ. Also, they showed larvicidal activity at 72 h of the experiment. As a result, these compounds might be great leads for the development of next-generation multitargeted agents.


Assuntos
Antineoplásicos , Sulfadiazina , Antifúngicos/farmacologia , Triazenos/química , Triazenos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
13.
Environ Res ; 239(Pt 1): 117408, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838205

RESUMO

With the widespread use of sulfonamide antibiotics (SAs), SAs are detected as residues in aquatic environments, posing a serious threat to human life and safety. Because of their high water solubility, fast transmission rate, and strong antibacterial properties, the safe disposal of SAs has become a key constraint for water quality assurance. Therefore, an ultrasound (US)-assisted zero-valent iron (ZVI)/persulfate (PS) system was proposed to explore the rapid and effective degradation of SAs. Comparative experiments were performed to study the removal of sulfadiazine (SDZ) by US, ZVI, PS, US/ZVI, US/PS, ZVI/PS, and US-ZVI/PS systems, respectively. Experimental results indicated that the highest removal efficiency of SDZ was ahieved in US-ZVI/PS system (97.4%), which were 2-44 times higher than that in other systems. Furthermore, the degradation efficiency of five typical SAs was achieved over 95%, demonstrating the effectiveness of the US ZVI/PS system for SAs removal. Also, quantum chemical computations for potential reactive sites of SAs and intermediate product detection by HPLC‒MS/MS were performed. The radical attack on active sites of SAs, such as N atom (number 7), was the main reason for SAs removal in US-ZVI/PS system. Besides, the common degradation pathways of six typical SAs were defined as S-N bond cleavage, C-N bond cleavage, benzene ring hydroxylation, aniline oxidation, and R substituent oxidation. Interestingly, the unique pathway of "SO2 group extraction" was observed in the degradation of six-membered ring SAs. Therefore, the US-ZVI/PS system is a promising and cost-effective method for the removal of SAs and other refractory pollutants.


Assuntos
Antibacterianos , Espectrometria de Massas em Tandem , Humanos , Sulfanilamida , Sulfadiazina , Sulfonamidas , Ferro
14.
Environ Res ; 217: 114778, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368374

RESUMO

A PbO2 electrode integrating electrocatalytic and adsorptive functions was successfully fabricated by embedding layer-by-layer graphene nanoplatelets (GNPs) into ß-PbO2 active layer (GNPs/PbO2) and employed as anode for high-efficient removal of sulfadiazine (SDZ). In electrochemical degradation experiments, SDZ was quickly enriched on the surface of GNPs/PbO2 film via adsorption and then oxidized by ⋅OH in-site. In terms of the electrocatalytic performance and adsorption of electrode, the optimal electrodeposition time for each ß-PbO2 outer layer was 4 min (GNPs/PbO2-4). Compared with conventional PbO2 electrode, the layer-by-layer GNPs resulted in the smaller crystal size and denser surface of PbO2 electrode, thus facilitating the generation of active oxygen species. At the same time, the specific surface area, oxygen evolution potential (OEP) of the anode were enhanced and the charge-transfer resistance was reduced. For GNPs/PbO2-4 anode, the optimal conditions of electrochemical oxidation of SDZ were identified as initial pH 9, 50 mg/L of SDZ and 20 mA/cm2 of current density using response surface methodology (RSM), 98.15% of SDZ could be removed in this case. The contribution of radical oxidation and non-radical oxidation to SDZ removal was about 79% and 21%, respectively. Moreover, the reaction pathways of SDZ on the GNPs/PbO2-4 electrode involving hydroxylation, radical reaction and ring cleavage were speculated. Finally, the continuous SDZ degradation and accelerated service lifetime test suggested that the GNPs/PbO2-4 electrode was shown to be stable and repeatable, and the Pb2+ concentration was measured to ensure the safety of the treated solution. Consequently, the above findings provide an innovative way to design and prepare an effective and stable PbO2 electrode for electrochemical degradation of antibiotic wastewater.


Assuntos
Grafite , Poluentes Químicos da Água , Óxidos/química , Antibacterianos , Sulfadiazina , Poluentes Químicos da Água/análise , Oxirredução , Eletrodos , Titânio/química
15.
Environ Res ; 225: 115516, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805897

RESUMO

Tetracycline (TCC) and sulfadiazine (SDZ) are two of the most consumed antibiotics for human therapies and bacterial infection treatments in aquafarming fields, but their accumulative residues can result in negative effects on water and aquatic microorganisms. Removal techniques are therefore required to purify water before use. Herein, we concentrate on adsorptive removal of TCC and SDZ using cobalt@carbon nanotubes (Co@CNTs) derived from Co-ZIF-67. The presence of CNTs on the edge of nanocomposites was observed. Taguchi orthogonal array was designed with four variables including initial concentration (5-20 mg L-1), dosage (0.05-0.2 g L-1), time (60-240 min), and pH (2-10). Concentration and pH were found to be main contributors to adsorption of tetracycline and sulfadiazine, respectively. The optimum condition was found at concentration 5 mg L-1, dosage 0.2 g L-1, contact time 240 min, and pH 7 for both TCC and SDZ removals. Confirmation tests showed that Co@CNTs-700 removed 99.6% of TCC and 97.3% of SDZ with small errors (3-5.5%). Moreover, the kinetic and isotherm were studied, which kinetic and isotherm data were best fitted with pseudo second-order model and Langmuir. Maximum adsorption capacity values for TCC and SDZ were determined at 118.4-174.1 mg g-1 for 180 min. We also proposed the main role of interactions such as hydrogen bonding, π-π stacking, and electrostatic attraction in the adsorption of antibiotics. With high adsorption performance, Co@CNTs-700 is expected to remove antibiotics efficiently from wastewater.


Assuntos
Nanocompostos , Nanotubos de Carbono , Poluentes Químicos da Água , Humanos , Antibacterianos , Sulfadiazina , Nanotubos de Carbono/química , Tetraciclina , Água , Nanocompostos/química , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
16.
Plant Cell Rep ; 42(3): 535-548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609768

RESUMO

KEY MESSAGE: We extended the applicability of the BY-2 cell line as a model by introducing two new selection systems. Our protocol provides guidelines for optimising Basta selection in other recalcitrant models. Tobacco BY-2 cell line is the most commonly used cytological model in plant research. It is uniform, can be simply treated by chemicals, synchronised and easily transformed. However, only a few selection systems are available that complicate advanced studies using multiple stacked transgenes and extensive gene editing. In our work, we adopted for BY-2 cell line two other selection systems: sulfadiazine and phosphinothricin (PPT, an active ingredient of Basta herbicide). We show that sulfadiazine can be used in a wide range of concentrations. It is suitable for co-transformation and subsequent double selection with kanamycin or hygromycin, which are standardly used for BY-2 transformation. We also have domesticated the sulfadiazine resistance for the user-friendly GoldenBraid cloning system. Compared to sulfadiazine, establishing selection on phosphinothricin was considerably more challenging. It did not work in any concentration of PPT with standardly cultured cells. Since the selection is based on blocking glutamine synthetase and consequent ammonium toxicity and deficiency of assimilated nitrogen, we tried to manipulate nitrogen availability. We found that the PPT selection reliably works only with nitrogen-starved cells with reduced nitrate reserves that are selected on a medium without ammonium nitrate. Both these adjustments prevent the release of large amounts of ammonium, which can toxify the entire culture in the case of standardly cultured cells. Since high nitrogen reserves can be a common feature of in vitro cultures grown on MS media, nitrogen starvation could be a key step in establishing phosphinothricin resistance in other plant models.


Assuntos
Compostos de Amônio , Nicotiana , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Sulfadiazina , Nitrogênio , Transformação Genética
17.
Exp Parasitol ; 246: 108460, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642299

RESUMO

Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.


Assuntos
Guanabenzo , Nanopartículas , Toxoplasma , Toxoplasmose , Animais , Camundongos , Guanabenzo/farmacologia , Guanabenzo/uso terapêutico , Nanopartículas/uso terapêutico , Pirimetamina/uso terapêutico , Pirimetamina/farmacologia , Sulfadiazina/uso terapêutico , Sulfadiazina/farmacologia , Toxoplasmose/tratamento farmacológico
18.
Can J Anaesth ; 70(5): 824-835, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829103

RESUMO

PURPOSE: Central venous catheters (CVCs) and pulmonary artery catheters (PACs) containing chlorhexidine, silver sulfadiazine, or latex can cause perioperative anaphylaxis. We examined the incidence of and outcomes associated with anaphylaxis caused by CVCs/PACs. METHODS: In a historical cohort study, we retrospectively identified adult patients fitted with CVCs/PACs at the Mayo Clinics in Minnesota, Arizona, and Florida from 1 January 2008 to 1 March 2018. Potential and confirmed cases of perioperative anaphylactic reactions were individually reviewed and classified. RESULTS: During the study period, 39,505 procedures were performed during which CVCs/PACs were inserted. Of these, 2,937 patients with pre-existing chlorhexidine, sulfonamide (sulfa), and/or latex allergies had CVCs/PACs inserted that contained these substances. Perioperative anaphylaxis, in which CVCs/PACs were the confirmed or potential causative agent, occurred during 53 procedures. Seven patients had a preoperatively reported sulfa or latex allergy; no patients had a preoperative chlorhexidine allergy. Six of the seven patients with reported allergies to sulfa or latex had a CVC/PAC inserted that contained these substances. Twenty-four patients with anaphylaxis had postoperative allergic disease consultation; ten of these (42%) underwent skin testing. CONCLUSION: Perioperative anaphylactic reactions related to CVCs/PACs containing chlorhexidine, silver sulfadiazine, or latex were rare in this large historical cohort study. We identified 2,937 patients with pre-existing chlorhexidine, sulfa, and/or latex allergies and had CVCs/PACs inserted that contained these substances. Although few cases of perioperative anaphylaxis attributable to these substances were observed in patients with corresponding allergies, the potential for substantial complication exists. Providers should be aware of the potential for these hidden exposures.


RéSUMé: OBJECTIF: Les cathéters veineux centraux (CVC) et les cathéters artériels pulmonaires (CAP) contenant de la chlorhexidine, de la sulfadiazine argentique ou du latex peuvent provoquer une anaphylaxie périopératoire. Nous avons examiné l'incidence et les devenirs associés à l'anaphylaxie causée par les CVC/CAP. MéTHODE: Dans une étude de cohorte historique, nous avons identifié rétrospectivement des patients adultes chez lesquels un CVC/CAP avait été installé aux cliniques Mayo du Minnesota, de l'Arizona et de la Floride du 1er janvier 2008 au 1er mars 2018. Les cas potentiels et confirmés de réactions anaphylactiques périopératoires ont été examinés et classés individuellement. RéSULTATS: Au cours de la période à l'étude, 39 505 interventions ont été réalisées au cours desquelles des CVC/CAP ont été insérés. Parmi celles-ci, des CVC/CAP contenant de la chlorhexidine, des sulfamides et/ou du latex ont été insérés chez 2937 patients présentant des allergies préexistantes à ces substances. Une anaphylaxie périopératoire, dont l'agent causal confirmé ou potentiel était le CVC/CAP, s'est produite dans 53 interventions. Sept patients présentaient une allergie aux sulfamides ou au latex signalée avant l'opération; aucun patient n'a eu d'allergie préopératoire à la chlorhexidine. Un CVC/CAP contenant des sulfamides ou du latex a été inséré chez six des sept patients ayant signalé des allergies à ces substances. Vingt-quatre patients atteints d'anaphylaxie ont eu une consultation postopératoire pour une maladie allergique; dix d'entre eux (42 %) ont subi des tests cutanés. CONCLUSION: Les réactions anaphylactiques périopératoires liées aux CVC/CAP contenant de la chlorhexidine, de la sulfadiazine argentique ou du latex étaient rares dans cette vaste étude de cohorte historique. Nous avons identifié 2937 patients présentant des allergies préexistantes à la chlorhexidine, aux sulfamides et/ou au latex chez lesquels des CVC/CAP contenant ces substances ont été insérés. Bien que peu de cas d'anaphylaxie périopératoire attribuable à ces substances aient été observés chez des patients présentant des allergies correspondantes, il existe un risque de complication importante. Les fournisseurs doivent être conscients du potentiel de ces expositions cachées.


Assuntos
Anafilaxia , Cateterismo Venoso Central , Cateteres Venosos Centrais , Hipersensibilidade ao Látex , Adulto , Humanos , Clorexidina/efeitos adversos , Sulfadiazina de Prata , Anafilaxia/induzido quimicamente , Anafilaxia/epidemiologia , Sulfadiazina , Estudos de Coortes , Hipersensibilidade ao Látex/epidemiologia , Artéria Pulmonar , Estudos Retrospectivos
19.
Parasitol Res ; 122(10): 2353-2365, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610452

RESUMO

Toxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH2 or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC50 of the examined compounds 3(a-f) were recoded as 0.07492 µM, 0.07455 µM, 0.0392 µM, 0.03124 µM, 0.0533 µM, and 0.01835 µM, respectively, while the sulfadiazine exhibited 0.1852 µM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(a-f) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(d-f), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(d-f) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.


Assuntos
Sulfadiazina , Toxoplasma , Sulfadiazina/farmacologia , Sulfanilamida , Sulfonamidas , Triazóis
20.
Ecotoxicol Environ Saf ; 250: 114468, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592587

RESUMO

Norfloxacin (NFX) and sulfadiazine (SDZ) are two widely used antibiotics belonging to fluoroquinolone and sulfonamide groups, respectively, and have become the commonly detected micropollutants in aquatic environments. However, only few works have been conducted to investigate the highly probable inhibition of these antibiotic pollutants to Arthrospira platensis, which is an important species of cyanobacteria that is one of primary producers in aquatic ecosystems and should be remarkably sensitive to environmental pollutants due to its prokaryotic characteristics. Hence, the toxicological effects and removal efficiencies of NFX and SDZ in culturing A. platensis were studied by analyzing the biomass growth, photosynthetic pigments, primary biocomponents, and antibiotics concentration. The corresponding variations of these characteristics showed the higher sensitivity of A. platensis to NFX than to SDZ, indicating the specifically targeted effect of NFX on A. platensis, which could be confirmed in silico by the higher binding affinity of NFX with the critical enzyme. The obtained results illustrated the roles of NFX and SDZ on the growth of A. platensis, thus providing the great support in employing A. platensis to reduce hazards from contaminated water and recover biomass resources.


Assuntos
Spirulina , Norfloxacino/toxicidade , Norfloxacino/metabolismo , Sulfadiazina/toxicidade , Sulfadiazina/metabolismo , Ecossistema , Biomassa , Antibacterianos/toxicidade , Antibacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA