Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.532
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Nano Lett ; 24(18): 5593-5602, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619365

RESUMO

The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.


Assuntos
Nanopartículas , Polímeros , Animais , Polímeros/química , Nanopartículas/química , Humanos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Sistemas de Liberação de Medicamentos , Fenóis/química , Estresse Oxidativo/efeitos dos fármacos , Ácidos Borônicos/química , Retina/metabolismo , Camundongos
3.
Small ; 20(32): e2310675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488710

RESUMO

Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.


Assuntos
Estruturas Metalorgânicas , Pancreatite , Estruturas Metalorgânicas/química , Pancreatite/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Domínio Catalítico , Cobre/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Mitofagia/efeitos dos fármacos
4.
Chemistry ; 30(37): e202401331, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38687026

RESUMO

Despite decades of research, Parkinson's disease is still an idiopathic pathology for which no cure has yet been found. This is partly explained by the multifactorial character of most neurodegenerative syndromes, whose generation involves multiple pathogenic factors. In Parkinson's disease, two of the most important ones are the aggregation of α-synuclein and oxidative stress. In this work, we address both issues by synthesizing a multifunctional nanozyme based on grafting a pyridinophane ligand that can strongly coordinate CuII, onto biodegradable PEGylated polyester nanoparticles. The resulting nanozyme exhibits remarkable superoxide dismutase activity together with the ability to inhibit the self-induced aggregation of α-synuclein into amyloid-type fibrils. Furthermore, the combination of the chelator and the polymer produces a cooperative effect whereby the resulting nanozyme can also halve CuII-induced α-synuclein aggregation.


Assuntos
Cobre , Superóxido Dismutase , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Cobre/química , Humanos , Agregados Proteicos/efeitos dos fármacos , Nanopartículas/química , Polímeros/química , Polímeros/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Quelantes/química , Quelantes/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Ligantes
5.
Protein Expr Purif ; 222: 106535, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38901714

RESUMO

Human superoxide dismutase (hSOD1) plays an important role in the aerobic metabolism and free radical eliminating process in the body. However, the production of existing SOD faces problems such as complex purification methods, high costs, and poor product stability. This experiment achieved low-cost, rapid, and simple purification of hSOD1 through ammonium sulfate precipitation method and heat resistance of recombinant protein. We constructed a recombinant protein hSOD1-LR containing a resilin-like polypeptide tag and expressed it. The interest protein was purified by ammonium sulfate precipitation method, and the results showed that the purification effect of 1.5 M (NH4)2SO4 was the best, with an enzyme activity recovery rate of 80 % after purification. Then, based on its thermal stability, further purification of the interest protein at 60 °C revealed a purification fold of up to 24 folds, and the purification effect was similar to that of hSOD1-6xHis purified by nickel column affinity chromatography. The stability of hSOD1-LR showed that the recombinant protein hSOD1-LR has better stability than hSOD-6xHis. hSOD1-LR can maintain 76.57 % activity even after 150 min of reaction at 70 °C. At same time, hSOD1-LR had activity close to 80 % at pH < 5, indicating good acid resistance. In addition, after 28 days of storage at 4 °C and 40 °C, hSOD1-LR retained 92 % and 87 % activity, respectively. Therefore, the method of purifying hSOD1-LR through salt precipitation may have positive implications for the study of SOD purification.


Assuntos
Proteínas Recombinantes de Fusão , Humanos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/isolamento & purificação , Superóxido Dismutase-1/metabolismo , Estabilidade Enzimática , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Proteínas de Insetos
6.
Fish Shellfish Immunol ; 149: 109599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701990

RESUMO

Copper/zinc superoxide dismutase (Cu/Zn-SOD) can effectively eliminate reactive oxygen species (ROS),avoid damage from O2 to the body, and maintain O2 balance. In this study, multi-step high-performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify Cu/Zn-SOD from the serum of Pinctada fucata martensii (P. f. martensii) and was designated as PmECSOD. With a length of 1864 bp and an open reading frame (ORF) of 1422 bp, the cDNA encodes a 473 amino acid protein. The PmECSOD transcript was detected in multiple tissues by quantitative real-time PCR (qRT-PCR), with its highest expression level being in the gills. Additionally, the temporal expression of PmECSOD mRNA in the hemolymph was highest at 48 h after in vivo stimulation with Escherichia coli and Micrococcus luteus. The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.


Assuntos
Sequência de Aminoácidos , Imunidade Inata , Filogenia , Pinctada , Superóxido Dismutase , Animais , Pinctada/imunologia , Pinctada/genética , Pinctada/enzimologia , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Sequência de Bases , Alinhamento de Sequência/veterinária , Escherichia coli , DNA Complementar/genética , Micrococcus luteus/fisiologia , Regulação da Expressão Gênica/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Nanotechnology ; 35(36)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38865988

RESUMO

Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.


Assuntos
Estruturas Metalorgânicas , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/química , Espécies Reativas de Oxigênio/metabolismo , Humanos , Sequestradores de Radicais Livres/química , Nanoestruturas/química , Catalase/química , Catalase/metabolismo , Animais , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química
8.
J Nanobiotechnology ; 22(1): 286, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796465

RESUMO

Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.


Assuntos
Gastroenteropatias , Nanoestruturas , Humanos , Nanoestruturas/química , Animais , Enzimas/química , Enzimas/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Catalase/química , Catalase/metabolismo , Catálise , Glutationa Peroxidase/metabolismo
9.
J Enzyme Inhib Med Chem ; 39(1): 2377586, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39037009

RESUMO

Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.


Assuntos
Antiprotozoários , Relação Dose-Resposta a Droga , Leishmania infantum , Testes de Sensibilidade Parasitária , Superóxido Dismutase , Leishmania infantum/enzimologia , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Superóxido Dismutase/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia
10.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930834

RESUMO

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


Assuntos
Citoglobina , Superóxido Dismutase , Animais , Linhagem Celular , Citoglobina/química , Citoglobina/genética , Citoglobina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Dokl Biochem Biophys ; 516(1): 73-82, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38539011

RESUMO

This work finds suitable enzyme activity protectants to improve the recovery rate of enzyme activity in the preparation of human polymerized hemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA), including trehalose, sucrose, glucose, hydroxypropyl-ß-cyclodextrin, and mannitol.Different types and concentrations of enzyme activity protective agents were added during polymerization to compare their protective ability to enzyme activity and the effect on the properties of hemoglobin. The study found that compared with trehalose, the protective effect of sucrose on CA enzyme activity is non-significant to that on hemoglobin, the recovery rate of SOD, and CAT enzyme activity has significant increased. Glucose, hydroxypropyl-ß-cyclodextrin, and mannitol are unsuitable for the added enzyme activity protective agent of PolyHb-SOD-CAT-CA.The protective effect of sucrose on CA was non-significant with trehalose. The protective effect of sucrose on SOD and CAT enzyme activity was higher than trehalose, and the protective effect reached the maximum when the concentration reached 1.5%.


Assuntos
Anidrases Carbônicas , Catalase , Hemoglobinas , Superóxido Dismutase , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Humanos , Catalase/metabolismo , Catalase/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Polimerização
12.
J Biol Chem ; 298(12): 102610, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265587

RESUMO

The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states-where one subunit is metalated and the other is not-have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by "stealing" metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers-expressed as time to reach 30% heterodimer-ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase/genética , Superóxido Dismutase/química , Metais , Zinco/química , Mutação
13.
Anal Chem ; 95(24): 9366-9372, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276189

RESUMO

Single-atom nanozymes (SANs) with highly exposed active sites and remarkable catalytic activity have shown noteworthy practicability in heterogeneous catalysis-based bioassay. Nevertheless, most of them were reported with peroxidase-like activity and ordinary loading capability. It is still a challenge to prepare high-loading SANs with desirable superoxide dismutase (SOD)-like activity. In this work, Mn SAN was successfully confined in the frameworks of Prussian blue analogues formed on Ti3C2 MXene sheets with the assistance of massive surfactants, which show a superior loading efficiency of 13.5 wt % (typically <2.0 wt %). The prepared Mn SAN exhibits desirable superoxide radical anion elimination capability because of its SOD-like activity. Moreover, due to the wide-spectrum absorption behavior of the carriers, Mn SAN shows a synergistically quenching efficiency up to 98.89% on the emission of the reactive oxygen species-mediated chemiluminescent (CL) system. Inspired by these features, a CL quenching method was developed on a lateral flow test strip platform by utilizing Mn SAN as a signal quencher and acetamiprid as a model analyte. The method for detecting acetamiprid shows a detection range of 1.0-10,000 pg mL-1 and a limit of detection of 0.3 pg mL-1. Its accuracy has been validated by detecting acetamiprid in medicinal herbs with acceptable recoveries. This work opens an avenue for preparing SANs with a surfactant-assisted protocol and pioneers the study of SANs with SOD-like activity in bioassay.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxido Dismutase/química , Espécies Reativas de Oxigênio , Catálise
14.
Chemistry ; 29(38): e202300881, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096647

RESUMO

Nanoparticles exhibiting enzymatic functions have garnered considerable attention due to their structural robustness and the profusion of active sites that can be introduced to a single nanosized particle. Here we report that nanosized mixed-metal zeolitic imidazolate frameworks (ZIFs) show a superoxide dismutase (SOD)-like catalytic activity. We chose a ZIF composed of copper and zinc ions and 2-methylimidazole, CuZn-ZIF-8, in which the Cu and Zn ions are bridged by an imidazolato ligand. This coordination geometry closely mimics the active site of CuZn superoxide dismutase (CuZnSOD). The CuZn-ZIF-8 nanoparticles exhibit potent SOD-like activity, attributed to their porous nature and numerous copper active sites, and also possess exceptional recyclability.


Assuntos
Nanopartículas , Zeolitas , Cobre/química , Zeolitas/química , Biomimética , Superóxido Dismutase/química
15.
Inorg Chem ; 62(23): 8960-8968, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37252725

RESUMO

Superoxide dismutase (SOD) mimics are limited by a single active center, and their performance is difficult to achieve the activity level of natural SOD. Herein, we exhibit the coordination construction of different SOD active centers (Cu and Mn) and structural regulation of framework carbonization in MOFs. The obtained catalytic activity and excellent biocompatibility are comparable to Cu/Zn-SOD. The improvement of catalytic performance was attributed to the bimetallic sites' synergistic catalysis (enhancing the substrate affinity and accelerating the reaction process) on the one hand and the contribution of framework carbonization on the other hand, which not only regulate the relative position and valence of metal nodes but improve the spatial adaptability of the reaction and reduce the reaction barrier, and the increased conductivity of the framework accelerates the electron transfer process in the reaction. The excellent biocompatibility results from the fixing effect of the carbonized framework on the metal nodes. Mn/Cu-C-N2 was encapsulated in a chitosan film as an antioxidant compared with a pure chitosan film; the anthocyanin content of blueberries increased 2 times after being stored at room temperature for 7 days, and the content was 83% of the fresh blueberries, providing exciting potential for biological applications limited by the performance of SOD nanozymes.


Assuntos
Quitosana , Elétrons , Superóxido Dismutase/química , Antioxidantes/metabolismo , Metais , Catálise
16.
Inorg Chem ; 62(23): 8747-8760, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37247425

RESUMO

The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Superóxido Dismutase/química , Oxirredução , Superóxidos/química , Níquel/química
17.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835226

RESUMO

Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.


Assuntos
Produtos Biológicos , Isoflavonas , Superóxido Dismutase , Humanos , Antioxidantes/química , Produtos Biológicos/química , Diabetes Mellitus Tipo 2 , Peróxido de Hidrogênio , Isoflavonas/química , PPAR gama/química , Superóxido Dismutase/química , Superóxidos/química
18.
J Struct Biol ; 214(2): 107855, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390463

RESUMO

Protein 3D structure can be remarkably robust to the accumulation of mutations during evolution. On the other hand, sometimes a single amino acid substitution can be sufficient to generate dramatic and completely unpredictable structural consequences. In an attempt to rationally alter the preferences for the metal ion at the active site of a member of the Iron/Manganese superoxide dismutase family, two examples of the latter phenomenon were identified. Site directed mutants of SOD from Trichoderma reesei were generated and studied crystallographically together with the wild type enzyme. Despite being chosen for their potential impact on the redox potential of the metal, two of the mutations (D150G and G73A) in fact resulted in significant alterations to the protein quaternary structure. The D150G mutant presented alternative inter-subunit contacts leading to a loss of symmetry of the wild type tetramer, whereas the G73A mutation transformed the tetramer into an octamer despite not participating directly in any of the inter-subunit interfaces. We conclude that there is considerable intrinsic plasticity in the Fe/MnSOD fold that can be unpredictably affected by single amino acid substitutions. In much the same way as phenotypic defects at the organism level can reveal much about normal function, so too can such mutations teach us much about the subtleties of protein structure.


Assuntos
Manganês , Superóxido Dismutase , Substituição de Aminoácidos , Ferro/química , Manganês/química , Conformação Proteica , Superóxido Dismutase/química , Superóxido Dismutase/genética
19.
Mol Biol Evol ; 38(9): 3789-3803, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34021750

RESUMO

Internalization of a bacteria by an archaeal cell expedited eukaryotic evolution. An important feature of the species that diversified into the great variety of eukaryotic life visible today was the ability to combat oxidative stress with a copper-zinc superoxide dismutase (CuZnSOD) enzyme activated by a specific, high-affinity copper chaperone. Adoption of a single protein interface that facilitates homodimerization and heterodimerization was essential; however, its evolution has been difficult to rationalize given the structural differences between bacterial and eukaryotic enzymes. In contrast, no consistent strategy for the maturation of periplasmic bacterial CuZnSODs has emerged. Here, 34 CuZnSODs are described that closely resemble the eukaryotic form but originate predominantly from aquatic bacteria. Crystal structures of a Bacteroidetes bacterium CuZnSOD portray both prokaryotic and eukaryotic characteristics and propose a mechanism for self-catalyzed disulfide maturation. Unification of a bacterial but eukaryotic-like CuZnSOD along with a ferredoxin-fold MXCXXC copper-binding domain within a single polypeptide created the advanced copper delivery system for CuZnSODs exemplified by the human copper chaperone for superoxide dismutase-1. The development of this system facilitated evolution of large and compartmentalized cells following endosymbiotic eukaryogenesis.


Assuntos
Cobre , Eucariotos , Bactérias/genética , Bactérias/metabolismo , Cobre/metabolismo , Eucariotos/metabolismo , Humanos , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Zinco
20.
Proc Natl Acad Sci U S A ; 116(47): 23534-23541, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31591207

RESUMO

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.


Assuntos
Neoplasias da Mama/patologia , Autorrenovação Celular/fisiologia , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/fisiologia , Superóxido Dismutase/fisiologia , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/metabolismo , Reprogramação Celular , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/enzimologia , Invasividade Neoplásica , Proteínas de Neoplasias/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA