Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
2.
Nat Immunol ; 20(11): 1435-1443, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591569

RESUMO

Allergic skin diseases, such as atopic dermatitis, are clinically characterized by severe itching and type 2 immunity-associated hypersensitivity to widely distributed allergens, including those derived from house dust mites (HDMs). Here we found that HDMs with cysteine protease activity directly activated peptidergic nociceptors, which are neuropeptide-producing nociceptive sensory neurons that express the ion channel TRPV1 and Tac1, the gene encoding the precursor for the neuropeptide substance P. Intravital imaging and genetic approaches indicated that HDM-activated nociceptors drive the development of allergic skin inflammation by inducing the degranulation of mast cells contiguous to such nociceptors, through the release of substance P and the activation of the cationic molecule receptor MRGPRB2 on mast cells. These data indicate that, after exposure to HDM allergens, activation of TRPV1+Tac1+ nociceptor-MRGPRB2+ mast cell sensory clusters represents a key early event in the development of allergic skin reactions.


Assuntos
Alérgenos/imunologia , Dermatite Atópica/imunologia , Mastócitos/imunologia , Nociceptores/imunologia , Pyroglyphidae/imunologia , Animais , Comunicação Celular/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mastócitos/metabolismo , Camundongos Knockout , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Pele/citologia , Pele/imunologia , Canais de Cátion TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
3.
J Biol Chem ; 300(8): 107556, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002683

RESUMO

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.


Assuntos
Aplysia , Isoformas de Proteínas , Animais , Aplysia/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/genética , Taquicininas/metabolismo , Taquicininas/genética , Sequência de Aminoácidos , Transdução de Sinais , Processamento Alternativo , Humanos
4.
Nature ; 565(7737): 86-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532001

RESUMO

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Assuntos
Adaptação Psicológica/fisiologia , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Vias Neurais/fisiologia , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Neurônios Aferentes/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675424

RESUMO

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Saliva , Taquicininas , Viroses , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/genética , Arbovírus/metabolismo , Saliva/virologia , Taquicininas/genética , Taquicininas/metabolismo , Viroses/transmissão
6.
J Exp Biol ; 227(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39319454

RESUMO

Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D. melanogaster. A central objective of the current study was to examine the physiological role of tachykinin signaling in the MTs of adult D. melanogaster. Using the genetic toolbox available in this model organism along with in vitro and whole-animal bioassays, our results indicate that Drosophila tachykinins (DTKs) function as diuretic hormones by binding to the DTK receptor (DTKR) localized in stellate cells of the MTs. Specifically, DTK activates cation and anion transport across the stimulated MTs, which impairs their survival in response to desiccation because of their inability to conserve water. Thus, besides their previously described roles in neuromodulation of pathways controlling locomotion and food search, olfactory processing, aggression, lipid metabolism and metabolic stress, processing of noxious stimuli and hormone release, DTKs also appear to function as bona fide endocrine factors regulating the excretory system and appear essential for the maintenance of hydromineral balance.


Assuntos
Drosophila melanogaster , Transporte de Íons , Túbulos de Malpighi , Taquicininas , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Túbulos de Malpighi/metabolismo , Taquicininas/metabolismo , Taquicininas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Diuréticos/farmacologia
7.
Nature ; 545(7655): 477-481, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514446

RESUMO

In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.


Assuntos
Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Transcriptoma , Animais , Biomarcadores/análise , Channelrhodopsins , Canais de Cloreto/metabolismo , Canais de Cloreto/efeitos da radiação , Colecistocinina/análise , Colecistocinina/genética , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Taquicininas/análise , Taquicininas/genética , Vigília/fisiologia , Vigília/efeitos da radiação
8.
J Immunol ; 204(4): 879-891, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924647

RESUMO

Hematopoiesis is tightly regulated by the bone marrow (BM) niche. The niche is robust, allowing for the return of hematopoietic homeostasis after insults such as infection. Hematopoiesis is partly regulated by soluble factors, such as neuropeptides, substance P (SP), and neurokinin A (NK-A), which mediate hematopoietic stimulation and inhibition, respectively. SP and NK-A are derived from the Tac1 gene that is alternately spliced into four variants. The hematopoietic effects of SP and NK-A are mostly mediated via BM stroma. Array analyses with 2400 genes indicated distinct changes in SP-stimulated BM stroma. Computational analyses indicated networks of genes with hematopoietic regulation. Included among these networks is the high-mobility group box 1 gene (HMGB1), a nonhistone chromatin-associated protein. Validation studies indicated that NK-A could reverse SP-mediated HMGB1 decrease. Long-term culture-initiating cell assay, with or without NK-A receptor antagonist (NK2), showed a suppressive effect of HMGB1 on hematopoietic progenitors and increase in long-term culture-initiating cell assay cells (primitive hematopoietic cells). These effects occurred partly through NK-A. NSG mice with human hematopoietic system injected with the HMGB1 antagonist glycyrrhizin verified the in vitro effects of HMGB1. Although the effects on myeloid lineage were suppressed, the results suggested a more complex effect on the lymphoid lineage. Clonogenic assay for CFU- granulocyte-monocyte suggested that HMGB1 may be required to prevent hematopoietic stem cell exhaustion to ensure immune homeostasis. In summary, this study showed how HMGB1 is linked to SP and NK-A to protect the most primitive hematopoietic cell and also to maintain immune/hematopoietic homeostasis.


Assuntos
Proteína HMGB1/metabolismo , Hematopoese/genética , Neuroimunomodulação/genética , Neurocinina A/metabolismo , Substância P/metabolismo , Adolescente , Adulto , Processamento Alternativo , Animais , Benzamidas/farmacologia , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/imunologia , Células HEK293 , Hematopoese/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Neuroimunomodulação/imunologia , Neurocinina A/antagonistas & inibidores , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , Cultura Primária de Células , Taquicininas/genética , Quimeras de Transplante , Adulto Jovem
9.
Physiol Rev ; 94(1): 265-301, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24382888

RESUMO

The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.


Assuntos
Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptores de Taquicininas/genética , Taquicininas/genética , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia
10.
Biochem Biophys Res Commun ; 559: 197-202, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33945998

RESUMO

Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.


Assuntos
Caenorhabditis elegans/metabolismo , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetulus , Taquicininas/química , Taquicininas/genética , Taquicininas/isolamento & purificação
11.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884698

RESUMO

Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Hipófise/metabolismo , Hormônios Hipofisários/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Carpas , Proteínas de Peixes/genética , Receptores de Taquicininas/genética , Taquicininas/genética
12.
Am J Physiol Endocrinol Metab ; 318(6): E901-E919, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286880

RESUMO

Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo Anterior/metabolismo , Receptores de GABA-B/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/efeitos dos fármacos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Puberdade/efeitos dos fármacos , Puberdade/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de GABA-B/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Taquicininas/genética , Taquicininas/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Neuroendocrinology ; 110(7-8): 582-594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31484184

RESUMO

Obesity and anorexia result in dysregulation of the hypothalamic-pituitary-gonadal axis, negatively impacting reproduction. Ghrelin, secreted from the stomach, potentially mediates negative energy states and neuroendocrine control of reproduction by acting through the growth hormone secretagogue receptor (GHSR). GHSR is expressed in hypothalamic arcuate (ARC) Kisspeptin/Neurokinin B (Tac2)/Dynorphin (KNDy) neurons. Ghrelin is known to inhibit the M-current produced by KCNQ channels in other ARC neurons. In addition, we have shown 17ß-estradiol (E2) increases Ghsr expression in KNDy neurons 6-fold and increases the M-current in NPY neurons. We hypothesize that E2 increases GHSR expression in KNDy neurons to increase ghrelin sensitivity during negative energy states. Furthermore, we suspect ghrelin targets the M-current in KNDy neurons to control reproduction and energy homeostasis. We utilized ovariectomized Tac2-EGFP adult female mice, pretreated with estradiol benzoate (EB) or oil vehicle and performed whole-cell-patch-clamp recordings to elicit the M-current in KNDy neurons using standard activation protocols in voltage-clamp. Using the selective KCNQ channel blocker XE-991 (40 µM) to target the M-current, oil- and EB-treated mice showed a decrease in the maximum peak current by 75.7 ± 13.8 pA (n = 10) and 68.0 ± 14.7 pA (n = 11), respectively. To determine the actions of ghrelin on the M-current, ghrelin was perfused (100 nM) in oil- and EB-treated mice resulting in the suppression of the maximum peak current by 58.5 ± 15.8 pA (n = 9) and 59.2 ± 11.9 pA (n = 9), respectively. KNDy neurons appeared more sensitive to ghrelin when pretreated with EB, revealing that ARC KNDy neurons are more sensitive to ghrelin during states of high E2.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/farmacologia , Grelina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Relação Dose-Resposta a Droga , Feminino , Grelina/metabolismo , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
14.
Pharmacology ; 105(11-12): 723-728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694256

RESUMO

This study aimed to investigate whether the consecutive administration of methotrexate affects 5-hydroxytryptamine (5-HT) synthesis in the rat small intestine. Rats received methotrexate at a dose of 12.5 mg/kg intraperitoneally on 4 consecutive days. NG-nitro-L-arginine methyl ester (L-NAME) was given subcutaneously to inhibit nitric oxide (NO) synthase. Methotrexate moderately altered 5-HT synthesis, whereas the combined administration of methotrexate and L-NAME significantly changed 5-HT synthesis in the rat ileal tissue. These results suggest that endogenous NO has an antagonistic role in the induction of 5-HT synthesis in rats following the consecutive administration of methotrexate.


Assuntos
Inibidores Enzimáticos/farmacologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Metotrexato/farmacologia , Óxido Nítrico/metabolismo , Serotonina/biossíntese , Animais , Esquema de Medicação , Inibidores Enzimáticos/administração & dosagem , Injeções Intraperitoneais , Enteropatias/induzido quimicamente , Intestino Delgado/patologia , Masculino , Metotrexato/administração & dosagem , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Substância P/efeitos dos fármacos , Substância P/metabolismo , Taquicininas/efeitos dos fármacos , Taquicininas/genética , Taquicininas/metabolismo , Triptofano Hidroxilase/efeitos dos fármacos , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
15.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331300

RESUMO

A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund's adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.


Assuntos
Dor Facial/etiologia , Regulação da Expressão Gênica , Taquicininas/genética , Gânglio Trigeminal/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Dor Facial/metabolismo , Dor Facial/fisiopatologia , Imunofluorescência , Perfilação da Expressão Gênica , Hiperalgesia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Taquicininas/metabolismo , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/metabolismo
16.
Pain Med ; 20(10): 1963-1970, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908578

RESUMO

BACKGROUND: Low-level laser therapy (LLLT) is widely used in pain control in the field of physical medicine and rehabilitation and is effective for fibromyalgia pain. However, its analgesic mechanism remains unknown. A possible mechanism for the effect of LLLT on fibromyalgia pain is via the antinociceptive signaling of substance P in muscle nociceptors, although the neuropeptide has been known as a neurotransmitter to facilitate pain signals in the spinal cord. OBJECTIVE: To establish an animal model of LLLT in chronic muscle pain and to determine the role of substance P in LLLT analgesia. METHODS: We employed the acid-induced chronic muscle pain model, a fibromyalgia model proposed and developed by Sluka et al., and determined the optimal LLLT dosage. RESULTS: LLLT with 685 nm at 8 J/cm2 was effective to reduce mechanical hyperalgesia in the chronic muscle pain model. The analgesic effect was abolished by pretreatment of NK1 receptor antagonist RP-67580. Likewise, LLLT showed no analgesic effect on Tac1-/- mice, in which the gene encoding substance P was deleted. Besides, pretreatment with the TRPV1 receptor antagonist capsazepine, but not the ASIC3 antagonist APETx2, blocked the LLLT analgesic effect. CONCLUSIONS: LLLT analgesia is mediated by the antinociceptive signaling of intramuscular substance P and is associated with TRPV1 activation in a mouse model of fibromyalgia or chronic muscle pain. The study results could provide new insight regarding the effect of LLLT in other types of chronic pain.


Assuntos
Terapia a Laser , Dor Musculoesquelética/metabolismo , Dor Musculoesquelética/terapia , Substância P/fisiologia , Ácidos , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Dor Crônica/metabolismo , Dor Crônica/terapia , Venenos de Cnidários/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibromialgia/induzido quimicamente , Fibromialgia/psicologia , Fibromialgia/terapia , Terapia com Luz de Baixa Intensidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor Musculoesquelética/induzido quimicamente , Precursores de Proteínas/genética , Transdução de Sinais , Canais de Cátion TRPV/efeitos dos fármacos , Taquicininas/genética
17.
J Neuroinflammation ; 15(1): 105, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642930

RESUMO

BACKGROUND: Both dysfunctional neuropeptide signaling and immune system activation are characteristic of complex regional pain syndrome (CRPS). Unknown is whether substance P (SP) or calcitonin gene-related peptide (CGRP) support autoantibody production and, consequently, nociceptive sensitization. METHODS: These experiments involved the use of a well-characterized tibia fracture model of CRPS. Mice deficient in SP expression (Tac1-/-) and CGRP signaling (RAMP1-/-) were used to probe the neuropeptide dependence of post-fracture sensitization and antibody production. The deposition of IgM in the spinal cord, sciatic nerves, and skin was followed using Western blotting, as was expression of the CRPS-related autoantigen cytokeratin 16 (Krt16). Passive serum transfer to B-cell-deficient muMT mice was used to assess the production of functional autoantibodies in CRPS model mice. The use of immunohistochemistry allowed us to assess neuropeptide-containing fiber distribution and Langerhans cell abundance in mouse and human CRPS patient skin, while Langerhans cell-deficient mice were used to assess the functional contributions of these cells. RESULTS: Functional SP and CGRP signaling were required both for the full development of nociceptive sensitization after fracture and the deposition of IgM in skin and neural tissues. Furthermore, the passive transfer of serum from wildtype but not neuropeptide-deficient mice to fractured muMT mice caused enhanced allodynia and postural unweighting. Langerhans cells were increased in number in the skin of fracture mice and CRPS patients, and those increases in mice were reduced in neuropeptide signaling-deficient animals. Unexpectedly, Langerhans cell-deficient mice showed normal nociceptive sensitization after fracture. However, the increased expression of Krt16 after tibia fracture was not seen in neuropeptide-deficient mice. CONCLUSIONS: Collectively, these data support the hypothesis that neuropeptide signaling in the fracture limb of mice is required for autoantigenic IgM production and nociceptive sensitization. The mechanism may be related to neuropeptide-supported autoantigen expression.


Assuntos
Imunidade Adaptativa/fisiologia , Síndromes da Dor Regional Complexa/imunologia , Síndromes da Dor Regional Complexa/metabolismo , Imunoglobulina M/metabolismo , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Síndromes da Dor Regional Complexa/etiologia , Síndromes da Dor Regional Complexa/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Células de Langerhans/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Precursores de Proteínas/deficiência , Precursores de Proteínas/genética , Proteína 1 Modificadora da Atividade de Receptores/deficiência , Proteína 1 Modificadora da Atividade de Receptores/genética , Pele/patologia , Taquicininas/deficiência , Taquicininas/genética , Fraturas da Tíbia/complicações
18.
Biol Reprod ; 99(3): 565-577, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635430

RESUMO

Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.


Assuntos
Técnicas de Silenciamento de Genes/veterinária , Hormônio Liberador de Gonadotropina/genética , Neuropeptídeos/administração & dosagem , Reprodução/fisiologia , Peixe-Zebra/genética , Proteína Relacionada com Agouti/genética , Animais , Encéfalo/metabolismo , Regulação para Baixo , Feminino , Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/fisiologia , Hormônios Hipotalâmicos/genética , Hipotálamo/fisiologia , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Hipófise/fisiologia , Secretogranina II/genética , Taquicininas/genética , Regulação para Cima , Peixe-Zebra/fisiologia
19.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746853

RESUMO

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Assuntos
Crassostrea/metabolismo , Transdução de Sinais , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Crassostrea/genética , Regulação da Expressão Gênica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reprodução , Taquicininas/química , Taquicininas/genética
20.
Brain Behav Immun ; 59: 219-232, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27621226

RESUMO

The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/genética , Depressão/genética , Precursores de Proteínas/genética , Precursores de Proteínas/fisiologia , Taquicininas/genética , Taquicininas/fisiologia , Anedonia , Animais , Ansiedade/psicologia , Depressão/psicologia , Preferências Alimentares , Genes fos , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores da Neurocinina-1/genética , Substância P/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA