Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267690

RESUMO

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Assuntos
Compostos Organosselênicos , Temefós , Humanos , Ratos , Animais , Caspase 3 , Temefós/farmacologia , Acetilcolinesterase , Estresse Oxidativo , Antioxidantes/farmacologia , Derivados de Benzeno/farmacologia , Derivados de Benzeno/uso terapêutico , Derivados de Benzeno/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Doxorrubicina/toxicidade
2.
Malar J ; 22(1): 48, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759908

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS: The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS: The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS: Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.


Assuntos
Anopheles , Bacillus thuringiensis , Inseticidas , Malária , Animais , Feminino , Humanos , Temefós/farmacologia , Larva , Etiópia , Mosquitos Vetores , Inseticidas/farmacologia
3.
Bioorg Chem ; 133: 106436, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841047

RESUMO

The ongoing study reports the synthesis, spectroscopic analyses and larvicidal efficacy of novel series of quinazolinone derivatives and related compounds. The structures of the products were confirmed relied on their analytical and spectral data (IR, 1H NMR, and 13C NMR). The spectral documentation promoted the successful isolation of the desirable compounds. The insecticidal activities of the synthesized compounds were assessed against laboratory and field strains of Culex pipiens larvae and a predator from the same ecological niche, Cybister tripunctatus. The results revealed that most of the tested compounds showed high potencies against lab strain of C. pipiens larvae with low resistance ratios in filed strain. In particular, compounds 15, 6 and 16 showed low LC50 values, 0.094, 0.106, 0.129 (µg/mL), respectively against lab strain of C. pipiens larvae. The present study also explored the toxicity of tested compounds against field strain of non-target C. tripunctatus. Most of tested compounds were safer than temephos, especially 15 and 6 with SI/PSF values 96.746 and 83.167, respectively. Structure-activity relationship (SAR) was discussed the effect of substituents insertion on the derivatives activities. Quinazolinone derivatives and related compounds are promising compounds in the mosquito control programs and further studies are recommended to develop more effective derivatives and reveal their mode of action.


Assuntos
Culex , Inseticidas , Quinazolinonas , Animais , Culex/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Larva , Relação Estrutura-Atividade , Temefós/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia
4.
Exp Parasitol ; 254: 108627, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802180

RESUMO

Temephos is the World Health Organization (WHO) recommended larvicide and is still being utilized worldwide to control larvae of dengue vectors; Aedes aegypti and Aedes albopictus. The efficacy of a commercial temephos product; Temebate® to exterminate the local populations of Ae. albopictus larvae originated from different land use particularly dengue-risk and dengue-free housing localities as well as agrarian localities including oil palm plantations, rubber estates and paddy fields was assessed to verify its bioefficacy in these localities. Field populations of Ae. albopictus larvae were attained via a larval survey at each study locality. Each Ae. albopictus larval population was subjected to a 24-h larval bioassay using Temebate® at operational dosage of 1 mg/L. Almost all Ae. albopictus larval populations demonstrated mortalities between 7.00% and 100.00% by the end of the first 4 h of Temebate® exposure with the resistance ratios between 0.94 and 8.33. After 24 h of Temebate® exposure, all sixteen Ae. albopictus larval populations exhibited increased mortalities with ten of them showing 100% mortalities. These results confirmed the relevance of Temebate® to be continuously used by the residents of these localities as their control efforts against dengue vectors. Nevertheless, Temebate® application by consumers in dengue-risk localities need to be carefully monitored to prevent further development of temephos resistance among Ae. albopictus populations and substantiated with other vector control approaches.


Assuntos
Aedes , Dengue , Inseticidas , Animais , Humanos , Temefós/farmacologia , Inseticidas/farmacologia , Larva , Malásia , Mosquitos Vetores , Dengue/prevenção & controle , Dengue/epidemiologia , Resistência a Inseticidas
5.
J Vector Borne Dis ; 60(1): 57-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026220

RESUMO

Aedes aegypti (Linnaeus) plays an important role as a vector of different deadly diseases particularly dengue fever. Insecticides are used as a primary tool to control Ae. aegypti. However, due to the excessive use of insecticides on agricultural, public health, and industrial levels, mosquitoes have developed resistance. In this study, the current susceptibility status of Ae. aegypti mosquitoes against different insecticides (Temephos, DDT, dieldrin, Malathion, Bendiocarb, Permethrin, Cypermethrin, and Lambda-cyhalothrin) was evaluated in district Lahore and district Muzaffargarh of Punjab, Pakistan. For this purpose, WHO bioassays and biochemical assays were performed on Ae. aegypti population from Lahore (APLa) and Aedes population from Muzaffargarh (APMg). Results of APLa and APMg showed high levels of resistance against the larvicide Temephos. Resistance against all adulticides was also observed in APLa and APMg (% mortality < 98%). The biochemical assays indicated statistically significant elevated levels of detoxification enzymes in APLa and APMg. APLa showed slightly higher levels as compared to APMg. Mosquitoes were also screened for the presence of kdr mutations. The results revealed no mutation in domain II while the presence of mutation F1534C in domain III was found in both field populations. The results showed the presence of moderate to high grade resistance against all insecticides in Ae. aegypti in district Lahore and district Muzaffargarh of Punjab, Pakistan.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Aedes/genética , Temefós/farmacologia , Paquistão/epidemiologia , Mosquitos Vetores/genética , Piretrinas/farmacologia
6.
J Vector Borne Dis ; 60(3): 300-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37843241

RESUMO

BACKGROUND & OBJECTIVES: Aedes (Stegomyia) aegypti is a primary vector responsible for the transmission of various arboviral diseases in India. Without an effective drug or vaccine against these diseases, chemical insecticide-based vector control supplemented with source reduction remains the best option for their effective management. The development of insecticide resistance due to the continuous use of insecticides might affect the control operations. METHODS: Adults and larvae of Aedes aegypti were collected from different localities in Delhi. Larvae were exposed to discriminating (0.02mg/l) and application (1mg/l) doses of temephos. WHO tube assay was conducted for F1 adults using impregnated insecticide papers of dichlorodiphenyltrichloroethane (DDT), malathion, deltamethrin, permethrin, cyfluthrin, and lambda-cyhalothrin. RESULTS: Larvae of Ae. aegypti were found resistant (76.0%) to the discriminating dose of temephos, whereas suscep-tible (100.0%) to the application dose of the temephos. Adult Aedes (Fl) mosquitoes were resistant to DDT (23.7%), malathion (90.5%), deltamethrin (76.0%), permethrin (96.2 %) cyfluthrin (85.5%), and lambda-cyhalothrin (94.0%). INTERPRETATION & CONCLUSION: Indoor residual spray is not used in Delhi for vector control. Resistance in Aedes might be due to pesticide usage for agricultural activities in peripheral regions of Delhi. There is a need to investigate more on the insecticide resistance mechanisms for indirect resistance development. Understanding the insecticide susceptibility status of urban vectors is critical for planning effective control strategies.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Malation/farmacologia , DDT/farmacologia , Temefós/farmacologia , Saúde Pública , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Larva , Índia
7.
Malar J ; 21(1): 295, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271447

RESUMO

BACKGROUND: The use of synthetic insecticides against mosquitoes may lead to resistance development and potential health hazards in humans and the environment. Consequently, a paradigm needs to shift towards the alternative use of botanical insecticides that could strengthen an insecticide resistance management programme. This study aimed to assess the insecticidal effects aqueous, hexane, and methanol crude leaf extracts of Calpurnia aurea, Momordica foetida, and Zehneria scabra on an insectary colony of Anopheles stephensi larvae and adults. METHODS: Fresh leaves of C. aurea, M. foetida and Z. scabra were collected and dried, then separately ground to powder. Powdered leaves of test plants were extracted using sonication with aqueous, hexane, and methanol solvents. The extracts were concentrated, and a stock solution was prepared. For comparison, Temephos (Abate®) and control solutions (a mixture of water and emulsifier) were used as the positive and negative controls, respectively. Different test concentrations for the larvae and the adults were prepared and tested according to WHO (2005) and CDC (2010) guidelines to determine lethal concentration (LC) values. Mortality was observed after 24 h exposure. The statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) software (Kruskal-Wallis test) and R software (a generalized linear model was used to determine LC50 and LC90 values of the extracts). RESULTS: The lowest LC50 values were observed in aqueous extracts of M. foetida followed by Z. scabra extract and C. aurea leaves at 34.61, 35.85, and 38.69 ppm, respectively, against the larvae. Larval mortality was not observed from the hexane extracts and negative control, while the standard larvicide (temephos) achieved 100% mortality. Further, the adulticidal efficacy was greatest for aqueous extract of Z. scabra with LC50 = 176.20 ppm followed by aqueous extract of C. aurea (LC50 = 297.75 ppm). CONCLUSION: The results suggest that the leaf extracts of the three test plants have the potential of being used for the control of vector An. stephensi larvae and adult instead of synthetic mosquitocides. Further studies need to be conducted to identify the active ingredients and their mode of action.


Assuntos
Aedes , Anopheles , Culex , Culicidae , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Hexanos/farmacologia , Temefós/farmacologia , Metanol/farmacologia , Pós/farmacologia , Mosquitos Vetores , Larva , Extratos Vegetais/farmacologia , Solventes/farmacologia , Água , Folhas de Planta
8.
Med Vet Entomol ; 36(1): 56-65, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34751971

RESUMO

The recent scale-up of insecticide use has led to the rapid spread of insecticide resistance (IR) in mosquito populations across the world. Previous work has suggested that IR mechanisms could influence mosquito life-history traits, leading to alterations in fitness and key physiological functions. This study investigates to what extent mosquito fitness may be affected in a colony of Aedes aegypti after selection with temephos, permethrin or malathion insecticides. We measured immature development, sex ratio, adult longevity, energetic reserves under different rearing conditions and time points, ingested bloodmeal volume, mosquito size, male and female reproductive fitness and flight capability in the unexposed offspring of the three selected strains and unselected strain. We found that insecticide selection does have an impact on mosquito fitness traits in both male and female mosquitoes, with our temephos-exposed strain showing the highest immature development rates, improved adult survival, larger females under crowded rearing and increased sperm number in males. In contrast, this strain showed the poorest reproductive success, demonstrating that insecticide selection leads to trade-offs in life-history traits, which have the potential to either enhance or limit disease transmission potential.


Assuntos
Aedes , Inseticidas , Aedes/fisiologia , Animais , Feminino , Fertilidade , Resistência a Inseticidas , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Permetrina/farmacologia , Temefós/farmacologia
9.
Med Vet Entomol ; 35(4): 556-566, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34077571

RESUMO

Dillapiole, extracted from Piper aduncum essential oil and its derivatives, has been shown to be a potential alternative to the control of Aedes aegypti, which has become resistant to synthetic insecticides. Methyl ether dillapiole (MED) and temephos (TM) were compared to complement the data on the genotoxicity and developmental changes of Ae. aegypti. Over four generations (G1 -G4 ), third stage larvae were treated with MED at 60, 80 and 100 µg/mL and TM at 0.002, 0.005 and 0.007 µg/mL for 4 h. Adult females were separated to estimate oviposition and hatching rates, and total egg length. Over the four generations, a significant reduction was recorded in oviposition and hatching rates, and in mean egg length (Tukey, P < 0.05), compared with the negative control (NC). Cytological slide preparations were done from adult oocytes and larval neuroblasts. The cumulative effects of genotoxic (bridges, budding and nuclear fragmentation) and mutagenic (micronucleus and chromosomal breakage) damage was observed in the neuroblasts and oocytes of exposed mosquitoes. Developmental changes and damage to the genome of MED-treated Ae. aegypti were greater than those caused by TM. Further studies should focus on understanding the effects of the MED molecule on Ae. aegypti.


Assuntos
Aedes , Inseticidas , Éteres Metílicos , Aedes/genética , Compostos Alílicos , Animais , Dano ao DNA , Dioxóis , Feminino , Inseticidas/farmacologia , Larva , Éteres Metílicos/farmacologia , Mutagênicos/farmacologia , Temefós/farmacologia
10.
Mem Inst Oswaldo Cruz ; 114: e180318, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30916115

RESUMO

BACKGROUND: The longstanding application of insecticides for vector control without periodic monitoring of the population response to these chemicals can directly drive the selection of resistant populations of vector mosquitoes. Tocantins is the newest state of the Brazilian Federation. Despite a historically high number of dengue cases, studies and monitoring data concerning insecticide resistance in the state are lacking. OBJECTIVES: To verify the resistance status of Aedes aegypti from 10 populations distributed throughout the state connected by rivers and roads. METHODS: Between 50 and 150 ovitraps were installed in house gardens within each municipality. Collection points were established based on the importance of the towns and on geographic aspects. Dose response bioassays were performed in accordance with World Health Organization guidelines. Molecular assays were conducted to detect kdr mutations, which are related to pyrethroid resistance. FINDINGS: Of the 3,200 ovitrap paddles analysed, 25.8% contained eggs, with a total of 55,687 eggs collected. With the exception of Caseara, all evaluated populations were considered to be resistant to temephos. The data showed different levels of resistance to deltamethrin among the samples. Caseara and Guaraí showed the lowest RR95 values. On average, the NaVR1 kdr allele was most frequent (40.3%), followed by NaVS (38.1%), and NaVR2 (21.6%). Palmas, the capital of the state, had the highest frequency of kdr alleles (87.5%). MAIN CONCLUSIONS: With the exception of Palmas, the towns with the highest indexes (ovitrap positivity, number and density of eggs), as well with high levels of resistance and kdr alleles were located along the BR-153 road, indicating that the flow of people and cargo can contribute to the dispersion of the vector and potentially resistance. This study contributes substantially to knowledge regarding the insecticide resistance profile of Tocantins mosquito populations; the data generated via the study could facilitate the judicious use of insecticides by vector control programs.


Assuntos
Aedes/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Temefós/farmacologia , Aedes/genética , Animais , Brasil , Dengue/transmissão , Feminino , Genótipo , Resistência a Inseticidas/efeitos dos fármacos , Masculino , Mosquitos Vetores/genética , Mutação , Rios
11.
Mem Inst Oswaldo Cruz ; 114: e180544, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038548

RESUMO

BACKGROUND: Aedes aegypti populations in Brazil have been subjected to insecticide selection pressures with variable levels and sources since 1967. Therefore, the Brazilian Ministry of Health (MoH) coordinated the activities of an Ae. aegypti insecticide resistance monitoring network (MoReNAa) from 1999 to 2012. OBJECTIVES: The objective of this study was to consolidate all information available from between 1985 and 2017 regarding the resistance status and mechanisms of Brazilian Ae. aegypti populations against the main insecticide compounds used at the national level, including the larvicide temephos (an organophosphate) and the adulticide deltamethrin (a pyrethroid). METHODS: Data were gathered from two sources: a bibliographic review of studies published from 1985 to 2017, and unpublished data produced by our team within the MoReNAa between 1998 and 2012. A total of 146 municipalities were included, many of which were evaluated several times, totalling 457 evaluations for temephos and 274 for deltamethrin. Insecticide resistance data from the five Brazilian regions were examined separately using annual records of both the MoH supply of insecticides to each state and the dengue incidence in each evaluated municipality. FINDINGS: Ae. aegypti resistance to temephos and deltamethrin, the main larvicide and adulticide, respectively, employed against mosquitoes in Brazil for a long time, was found to be widespread in the country, although with some regional variations. Comparisons between metabolic and target-site resistance mechanisms showed that one or another of these was the main component of pesticide resistance in each studied population. MAIN CONCLUSIONS: (i) A robust dataset on the assessments of the insecticide resistance of Brazilian Ae. aegypti populations performed since 1985 was made available through our study. (ii) Our findings call into question the efficacy of chemical control as the sole methodology of vector control. (iii) It is necessary to ensure that sustainable insecticide resistance monitoring is maintained as a key component of integrated vector management. (iv) Consideration of additional parameters, beyond the supply of insecticides distributed by the MoH or the diverse local dynamics of dengue incidence, is necessary to find consistent correlations with heterogeneous vector resistance profiles.


Assuntos
Aedes/efeitos dos fármacos , Dengue/prevenção & controle , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Temefós/farmacologia , Animais , Bioensaio , Brasil/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Incidência , Inseticidas/administração & dosagem , Nitrilas/administração & dosagem , Piretrinas/administração & dosagem , Temefós/administração & dosagem
12.
Malar J ; 17(1): 204, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776357

RESUMO

BACKGROUND: It has been documented that unplanned urbanization leads to the exposure of members of the Anopheles vectors to a range of water pollution in urban settings. Many surveys from African and Asian countries reported the presence of Anopheles larvae in polluted urban habitats. The present study documents an obvious tolerance of the melanic and normal forms of Anopheles arabiensis to urban polluted larval habitats accompanied by resistance to Temephos larvicide. METHODS: A cross-sectional survey was carried out to inspect apparently polluted An. arabiensis larval habitats during the hot dry season of 2015. Larval specimens were collected from only apparently polluted habitats after visual inspection from 5 localities in Khartoum State. After morphological and molecular identification of random samples of larvae the magnitude of water pollution was determined using nine abiotic factors. The susceptibility status of An. arabiensis larval forms from normal and polluted habitats to Temephos was tested using the WHO standard diagnostic concentration doses. RESULTS: Morphological and PCR analysis of anopheline larvae revealed the presence of An. arabiensis, a member of the Anopheles gambiae complex. Seven out of 9 physiochemical parameters showed higher concentrations in polluted larval habitats in comparison to control site. Anopheles arabiensis larvae were found in water bodies characterized by high mean of conductivity (1857.8 ± 443.3 uS/cm), turbidity (189.4 ± 69.1 NTU) and nitrate (19.7 ± 16.7 mg/l). The range of mortality rates of An. arabiensis larvae collected from polluted habitats in comparison to An. arabiensis larvae collected from non-polluted habitats was 6.7-64% (LD50 = 1.682) and 67.6-96% (LD50 = 0.806), respectively. CONCLUSIONS: The present study reveals that minor populations of An. arabiensis larval forms are adapted to breed in polluted urban habitats, which further influenced susceptibility to Temephos, especially for the melanic larval forms. This could have further implications on the biology of the malaria vector and on the transmission and epidemiology of urban malaria in Sudan.


Assuntos
Anopheles/fisiologia , Ecossistema , Resistência a Inseticidas , Inseticidas/farmacologia , Temefós/farmacologia , Poluição Química da Água/análise , Animais , Anopheles/crescimento & desenvolvimento , Cidades , Larva/crescimento & desenvolvimento , Larva/fisiologia , Sudão
13.
Parasitol Res ; 117(6): 1941-1952, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29713901

RESUMO

Many countries in Latin America have recently experienced outbreaks of Zika and chikungunya fever, in additional to the usual burden imposed by dengue, all of which are transmitted by Aedes aegypti in this region. To identify potential larvicides, we determined the toxicity of eight modern insecticides to A. aegypti larvae from a colony that originated from field-collected insects in southern Mexico. The most toxic compounds were pyriproxyfen (which prevented adult emergence) and λ-cyhalothrin, followed by spinetoram, imidacloprid, thiamethoxam, and acetamiprid, with chlorantraniliprole and spiromesifen the least toxic products. Field trails performed in an urban cemetery during a chikungunya epidemic revealed that insecticide-treated ovitraps were completely protected from the presence of Aedes larvae and pupae for 6 and 7 weeks in spinosad (Natular G30) and λ-cyhalothrin-treated traps in both seasons, respectively, compared to 5-6 weeks for temephos granule-treated ovitraps, but was variable for pyriproxyfen-treated ovitraps with and 1 and 5 weeks of absolute control in the dry and rainy seasons, respectively. Insecticide treatments influenced the mean numbers of Aedes larvae + pupae in each ovitrap, mean numbers of eggs laid, and percentage of egg hatch over time in both trials. The dominant species was A. aegypti in both seasons, although the invasive vector Aedes albopictus was more prevalent in the rainy season (26.7%) compared to the dry season (10.2%). We conclude that the granular formulation of spinosad (Natular G30) and a suspension concentrate formulation of λ-cyhalothrin proved highly effective against Aedes spp. in both the dry and rainy seasons in the cemetery habitat in this region.


Assuntos
Aedes/efeitos dos fármacos , Febre de Chikungunya/prevenção & controle , Dengue/prevenção & controle , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Infecção por Zika virus/prevenção & controle , Aedes/virologia , Animais , Cemitérios , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Dengue/transmissão , Dengue/virologia , Combinação de Medicamentos , Insetos Vetores/virologia , Macrolídeos/farmacologia , México , Neonicotinoides/farmacologia , Nitrilas/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Piretrinas/farmacologia , Piridinas/farmacologia , Compostos de Espiro/farmacologia , Temefós/farmacologia , Tiametoxam , Tiazóis/farmacologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , ortoaminobenzoatos/farmacologia
14.
Med Vet Entomol ; 31(4): 340-350, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28752548

RESUMO

In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.


Assuntos
Aedes/efeitos dos fármacos , Aptidão Genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Aedes/genética , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Brasil , Feminino , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malation/farmacologia , Masculino , Nitrilas/farmacologia , Piretrinas/farmacologia , Reprodução , Temefós/farmacologia
15.
BMC Public Health ; 17(Suppl 1): 426, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28699554

RESUMO

BACKGROUND: Temephos in domestic water containers remains a mainstay of Latin American government programmes for control of Aedes aegypti and associated illnesses, including dengue. There is little published evidence about coverage of routine temephos programmes. A cluster randomised controlled trial of community mobilisation in Mexico and Nicaragua reduced vector indices, dengue infection, and clinical dengue cases. Secondary analysis from the Mexican arm of the trial examined temephos coverage and beliefs, and the impact of the trial on these outcomes. METHODS: The trial impact survey in December 2012, in 10,491 households in 45 intervention and 45 control clusters, asked about visits from the temephos programme, retention of applied temephos, and views about temephos and mosquito control. Fieldworkers noted if temephos was present in water containers. RESULTS: Some 42.4% of rural and 20.7% of urban households reported no temephos programme visits within the last 12 months. Overall, 42.0% reported they had temephos placed in their water containers less than 3 months previously. Fieldworkers observed temephos in at least one container in 21.1% of households. Recent temephos application and observed temephos were both significantly more common in urban households, when other household variables were taken into account; in rural areas, smaller households were more likely to have temephos present. Most households (74.4%) did not think bathing with water containing temephos carried any health risk. Half (51%) believed drinking or cooking with such water could be harmful and 17.6% were unsure. Significantly fewer households in intervention sites (16.5%) than in control sites (26.0%) (Risk Difference - 0.095, 95% confidence interval - 0.182 to -0.009) had temephos observed in their water; more households in intervention clusters (41.8%) than in control clusters (31.6%) removed the applied temephos quickly. Although fewer households in intervention sites (82.7%) compared with control sites (86.7%) (RD -0.04, 95% CI -0.067 to -0.013) agreed temephos and fumigation was the best way to avoid mosquitoes, the proportion believing this remained very high. CONCLUSION: Coverage with the government temephos programme was low, especially in rural areas. Despite an intervention encouraging non-chemical mosquito control, most households continued to believe that chemicals are the best control method. TRIAL REGISTRATION: ISRCTN: 27581154 .


Assuntos
Dengue/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Insetos Vetores/efeitos dos fármacos , Inseticidas , Controle de Mosquitos/métodos , Temefós , Abastecimento de Água , Aedes/efeitos dos fármacos , Animais , Criança , Pré-Escolar , Características da Família , Feminino , Fumigação , Humanos , Inseticidas/farmacologia , Masculino , México , Nicarágua , População Rural , Temefós/farmacologia , População Urbana , Água/química
16.
BMC Public Health ; 17(Suppl 1): 434, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28699558

RESUMO

BACKGROUND: A cluster-randomized controlled trial of community mobilisation for dengue prevention in Mexico and Nicaragua reported, as a secondary finding, a higher risk of dengue virus infection in households where inspectors found temephos in water containers. Data from control sites in the preceding pilot study and the Nicaragua trial arm provided six time points (2005, 2006, 2007 and 2011, 2012, 2013) to examine potentially protective effects of temephos on entomological indices under every day conditions of the national vector control programme. METHODS: Three household entomological indicators for Aedes aegypti breeding were Household Index, Households with pupae, and Pupae per Person. The primary exposure indicator at the six time points was temephos identified physically during the entomological inspection. A stricter criterion for exposure at four time points included households reporting temephos application during the last 30 days and temephos found on inspection. Using generalized linear mixed modelling with cluster as a random effect and temephos as a potential fixed effect, at each time point we examined possible determinants of lower entomological indicators. RESULTS: Between 2005 and 2013, temephos exposure was not significantly associated with a reduction in any of the three entomological indices, whether or not the exposure indicator included timing of temephos application. In six of 18 multivariate models at the six time points, temephos exposure was associated with higher entomological indices; in these models, we could exclude any protective effect of temephos with 95% confidence. CONCLUSION: Our failure to demonstrate a significant protective association between temephos and entomological indices might be explained by several factors. These include ecological adaptability of the vector, resistance of Aedes to the pesticide, operational deficiencies of vector control programme, or a decrease in preventive actions by households resulting from a false sense of protection fostered by the centralized government programme using chemical agents. Whatever the explanation, the implication is that temephos affords less protection under routine field conditions than expected from its efficacy under experimental conditions. TRIAL REGISTRATION: ISRCTN 27581154 .


Assuntos
Aedes/efeitos dos fármacos , Dengue/prevenção & controle , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Temefós/farmacologia , Abastecimento de Água , Água , Aedes/crescimento & desenvolvimento , Animais , Dengue/virologia , Vírus da Dengue , Características da Família , Humanos , Insetos Vetores/efeitos dos fármacos , Nicarágua , Projetos Piloto
17.
Pestic Biochem Physiol ; 136: 12-22, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28187825

RESUMO

Insect acetylcholinesterase (AChE) is the principal target for organophosphate (OP) and carbamate (CB) insecticides. In this research, an AChE from third instar larvae of elm left beetle, Xanthogaleruca luteola was purified by affinity chromatography. The enzyme was purified 75.29-fold with a total yield of 8.51%. As shown on denaturing SDS-PAGE, the molecular mass of purified AChE was 70kDa. The enzyme demonstrated maximum activity at pH7 and 35°C. Furthermore, a series of temephos (Tem) derivatives with the general structure of P(O)XP(O) (1-44) were prepared, synthesized and characterized by 31P, 13C, 1H NMR and FT-IR spectral techniques. The toxicity of 36 new Tem derivatives was screened on the third instar larvae and the compound compound 1,2 cyclohexane-N,N'-bis(N,N'-piperidine phosphoramidate) exhibited the highest insecticidal potential. The method of kinetic analysis is applied in order to obtain the maximum velocity (Vmax), the Michaelis constant (Km) and the parameters characterizing the inhibition type for inhibitors with >75% mortality in preliminary bioassay. The inhibition mechanism was mixed and inhibitory constant (Ki) was calculated as 4.70µM-1min-1 for this compound. Quantitative structure-activity relationship (QSAR) equations of these compounds indicated that the electron orbital energy has major effect on insecticidal properties.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Besouros/enzimologia , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Temefós/farmacologia , Acetilcolinesterase/isolamento & purificação , Animais , Proteínas de Insetos/isolamento & purificação , Inseticidas/química , Larva/enzimologia , Relação Quantitativa Estrutura-Atividade , Temefós/análogos & derivados , Temefós/química
18.
Mem Inst Oswaldo Cruz ; 111(5): 311-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27143489

RESUMO

The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Temefós/farmacologia , Animais , Bioensaio , Brasil , Larva/efeitos dos fármacos , Análise Espaço-Temporal
19.
Parasitol Res ; 115(6): 2185-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922177

RESUMO

Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone.


Assuntos
Aedes/efeitos dos fármacos , Cresóis/farmacologia , Dengue/prevenção & controle , Inseticidas/farmacologia , Octanóis/farmacologia , Feromônios/farmacologia , Aedes/fisiologia , Animais , Bacillus thuringiensis/fisiologia , Bioensaio , Combinação de Medicamentos , Estudos de Viabilidade , Larva/efeitos dos fármacos , Larva/fisiologia , Macrolídeos/farmacologia , Controle de Mosquitos , Temefós/farmacologia
20.
Parasitol Res ; 114(12): 4693-702, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344869

RESUMO

Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.


Assuntos
Aedes/efeitos dos fármacos , Febre de Chikungunya/transmissão , Dengue/transmissão , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Feminino , Humanos , Índia , Insetos Vetores/crescimento & desenvolvimento , Ilhas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malation/farmacologia , Masculino , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia , Temefós/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA