Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123.002
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955849

RESUMO

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Assuntos
Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Cérebro/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Habenula/fisiologia , Temperatura Alta , Larva/fisiologia , Atividade Motora/fisiologia , Movimento , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Rombencéfalo/fisiologia
2.
Cell ; 173(6): 1495-1507.e18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29706546

RESUMO

Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.


Assuntos
Ciclo Celular , DNA/análise , Proteoma/análise , Proteômica/métodos , Montagem e Desmontagem da Cromatina , Análise por Conglomerados , Células HeLa , Temperatura Alta , Humanos , Espectrometria de Massas , Mitose , Fosforilação , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , RNA Polimerase II/metabolismo , Solubilidade
3.
Cell ; 168(6): 1028-1040.e19, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283059

RESUMO

In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1's LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Grânulos Citoplasmáticos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mutagênese , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Prolina/análise , Prolina/metabolismo , Domínios Proteicos , Ribonucleases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Estresse Fisiológico
4.
Cell ; 167(1): 43-44, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662082

RESUMO

Stepping out of an aggressively air-conditioned building into the sweltering heat evokes a number of thermoregulatory responses, both autonomic (sweating) and behavioral (peeling off a layer of clothing or seeking an iced beverage). Just as we come out of the hottest part of the summer, a study by Tan and colleagues provides an exciting breakthrough in our ability to study the neural mechanisms of keeping cool when it's hot.


Assuntos
Regulação da Temperatura Corporal , Marcadores Genéticos , Vestuário , Temperatura Alta , Humanos , Sudorese
5.
Cell ; 167(1): 47-59.e15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27616062

RESUMO

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.


Assuntos
Regulação da Temperatura Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Temperatura Alta , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Núcleo Hipotalâmico Ventromedial/citologia , Animais , Comportamento Animal , Camundongos , Microdissecção , Neurônios/metabolismo , Optogenética , RNA Mensageiro/genética , Proteína S6 Ribossômica/metabolismo , Análise de Sequência de RNA , Núcleo Hipotalâmico Ventromedial/metabolismo
6.
Physiol Rev ; 103(4): 2507-2522, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326296

RESUMO

Anthropogenic climate change adversely impacts human health. In this perspective, we examine the impact of climate change on respiratory health risk. We describe five respiratory health threats-heat, wildfires, pollen, extreme weather events, and viruses-and discuss their impact on health outcomes in a warming climate. The risk of experiencing an adverse health outcome occurs at the intersection of exposure and vulnerability, consisting of sensitivity and adaptive capacity. Exposed individuals and communities most at risk are those with high sensitivity and low adaptive capacity, as influenced by the social determinants of health. We call for the implementation of a transdisciplinary strategy for accelerating respiratory health research, practice, and policy in the context of climate change.


Assuntos
Mudança Climática , Temperatura Alta , Humanos
7.
Cell ; 161(5): 1152-1163, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25981666

RESUMO

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Acil-CoA Desidrogenase/química , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
8.
Nature ; 630(8015): 91-95, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778107

RESUMO

The strength of materials depends on the rate at which they are tested, as defects, for example dislocations, that move in response to applied strains have intrinsic kinetic limitations1-4. As the deformation strain rate increases, more strengthening mechanisms become active and increase the strength4-7. However, the regime in which this transition happens has been difficult to access with traditional micromechanical strength measurements. Here, with microballistic impact testing at strain rates greater than 106 s-1, and without shock conflation, we show that the strength of copper increases by about 30% for a 157 °C increase in temperature, an effect also observed in pure titanium and gold. This effect is counterintuitive, as almost all materials soften when heated under normal conditions. This anomalous thermal strengthening across several pure metals is the result of a change in the controlling deformation mechanism from thermally activated strengthening to ballistic transport of dislocations, which experience drag through phonon interactions1,8-10. These results point to a pathway to better model and predict materials properties under various extreme strain rate conditions, from high-speed manufacturing operations11 to hypersonic transport12.


Assuntos
Cobre , Ouro , Temperatura , Titânio , Ouro/química , Titânio/química , Estresse Mecânico , Teste de Materiais , Fônons , Metais/química , Temperatura Alta
9.
Nature ; 631(8019): 94-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744323

RESUMO

Including an exceptionally warm Northern Hemisphere summer1,2, 2023 has been reported as the hottest year on record3-5. However, contextualizing recent anthropogenic warming against past natural variability is challenging because the sparse meteorological records from the nineteenth century tend to overestimate temperatures6. Here we combine observed and reconstructed June-August surface air temperatures to show that 2023 was the warmest Northern Hemisphere extra-tropical summer over the past 2,000 years exceeding the 95% confidence range of natural climate variability by more than 0.5 °C. Comparison of the 2023 June-August warming against the coldest reconstructed summer in CE 536 shows a maximum range of pre-Anthropocene-to-2023 temperatures of 3.93 °C. Although 2023 is consistent with a greenhouse-gases-induced warming trend7 that is amplified by an unfolding El Niño event8, this extreme emphasizes the urgency to implement international agreements for carbon emission reduction.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Efeitos Antropogênicos , Atmosfera/química , El Niño Oscilação Sul , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Fatores de Tempo , Temperatura Alta
10.
Nature ; 628(8007): 342-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538790

RESUMO

Climate change could pose an urgent threat to pollinators, with critical ecological and economic consequences. However, for most insect pollinator species, we lack the long-term data and mechanistic evidence that are necessary to identify climate-driven declines and predict future trends. Here we document 16 years of abundance patterns for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines with experimentally determined heat and desiccation tolerances, and use climate sensitivity models to project bee communities into the future. Aridity strongly predicted bee abundance for 71% of 665 bee populations (species × ecosystem combinations). Bee taxa that best tolerated heat and desiccation increased the most over time. Models forecasted declines for 46% of species and predicted more homogeneous communities dominated by drought-tolerant taxa, even while total bee abundance may remain unchanged. Such community reordering could reduce pollination services, because diverse bee assemblages typically maximize pollination for plant communities3. Larger-bodied bees also dominated under intermediate to high aridity, identifying body size as a valuable trait for understanding how climate-driven shifts in bee communities influence pollination4. We provide evidence that climate change directly threatens bee diversity, indicating that bee conservation efforts should account for the stress of aridity on bee physiology.


Assuntos
Abelhas , Mudança Climática , Dessecação , Ecossistema , Temperatura Alta , Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Abelhas/fisiologia , Biodiversidade , Tamanho Corporal/fisiologia , Aquecimento Global , Modelos Biológicos , Plantas , Polinização/fisiologia , Masculino , Feminino
11.
Nature ; 628(8006): 110-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570715

RESUMO

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Assuntos
Biopolímeros , Evolução Química , Temperatura Alta , Origem da Vida , Biopolímeros/química , Dimerização , Glicina/química , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Polifosfatos/química , Solventes/química
12.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Nature ; 614(7949): 774-780, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36813896

RESUMO

De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence-structure relationships. Here we describe a deep-learning-based 'family-wide hallucination' approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine3 and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M-1 s-1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes.


Assuntos
Aprendizado Profundo , Luciferases , Biocatálise , Domínio Catalítico , Estabilidade Enzimática , Temperatura Alta , Luciferases/química , Luciferases/metabolismo , Luciferinas/metabolismo , Luminescência , Oxirredução , Especificidade por Substrato
14.
Nature ; 615(7954): 841-847, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36991191

RESUMO

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Assuntos
Congelamento , Temperatura Alta , Oceanos e Mares , Água do Mar , Movimentos da Água , Regiões Antárticas , Água do Mar/análise , Água do Mar/química , Aceleração , Incerteza , Mudança Climática
15.
Nature ; 617(7961): 529-532, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37069264

RESUMO

By accounting for most of the poleward atmospheric heat and moisture transport in the tropics, the Hadley circulation largely affects the latitudinal patterns of precipitation and temperature at low latitudes. To increase our preparednesses for human-induced climate change, it is thus critical to accurately assess the response of the Hadley circulation to anthropogenic emissions1-3. However, at present, there is a large uncertainty in recent Northern Hemisphere Hadley circulation strength changes4. Not only do climate models simulate a weakening of the circulation5, whereas atmospheric reanalyses mostly show an intensification of the circulation4-8, but atmospheric reanalyses were found to have artificial biases in the strength of the circulation5, resulting in unknown impacts of human emissions on recent Hadley circulation changes. Here we constrain the recent changes in the Hadley circulation using sea-level pressure measurements and show that, in agreement with the latest suite of climate models, the circulation has considerably weakened over recent decades. We further show that the weakening of the circulation is attributable to anthropogenic emissions, which increases our confidence in human-induced tropical climate change projections. Given the large climate impacts of the circulation at low latitudes, the recent human-induced weakening of the flow suggests wider consequences for the regional tropical-subtropical climate.


Assuntos
Atmosfera , Mudança Climática , Atividades Humanas , Clima Tropical , Vento , Humanos , Modelos Climáticos , Temperatura Alta , Chuva , Incerteza , Atmosfera/análise , Pressão Atmosférica , Viés
16.
Nature ; 621(7979): 511-515, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37553075

RESUMO

Plywood is widely used in construction, such as for flooring and interior walls, as well as in the manufacture of household items such as furniture and cabinets. Such items are made of wood veneers that are bonded together with adhesives such as urea-formaldehyde and phenol-formaldehyde resins1,2. Researchers in academia and industry have long aimed to synthesize lignin-phenol-formaldehyde resin adhesives using biomass-derived lignin, a phenolic polymer that can be used to substitute the petroleum-derived phenol3-6. However, lignin-phenol-formaldehyde resin adhesives are less attractive to plywood manufacturers than urea-formaldehyde and phenol-formaldehyde resins owing to their appearance and cost. Here we report a simple and practical strategy for preparing lignin-based wood adhesives from lignocellulosic biomass. Our strategy involves separation of uncondensed or slightly condensed lignins from biomass followed by direct application of a suspension of the lignin and water as an adhesive on wood veneers. Plywood products with superior performances could be prepared with such lignin adhesives at a wide range of hot-pressing temperatures, enabling the use of these adhesives as promising alternatives to traditional wood adhesives in different market segments. Mechanistic studies indicate that the adhesion mechanism of such lignin adhesives may involve softening of lignin by water, filling of vessels with softened lignin and crosslinking of lignins in adhesives with those in the cell wall.


Assuntos
Adesivos , Lignina , Madeira , Adesivos/química , Formaldeído/química , Lignina/química , Fenóis/química , Ureia/química , Água/química , Madeira/química , Biomassa , Temperatura Alta
17.
Nature ; 617(7962): 738-742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100919

RESUMO

Cities are generally warmer than their adjacent rural land, a phenomenon known as the urban heat island (UHI). Often accompanying the UHI effect is another phenomenon called the urban dry island (UDI), whereby the humidity of urban land is lower than that of the surrounding rural land1-3. The UHI exacerbates heat stress on urban residents4,5, whereas the UDI may instead provide relief because the human body can cope with hot conditions better at lower humidity through perspiration6,7. The relative balance between the UHI and the UDI-as measured by changes in the wet-bulb temperature (Tw)-is a key yet largely unknown determinant of human heat stress in urban climates. Here we show that Tw is reduced in cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but increased in wet climates (summer precipitation of more than 570 millimetres). Our results arise from analysis of urban and rural weather station data across the world and calculations with an urban climate model. In wet climates, the urban daytime Tw is 0.17 ± 0.14 degrees Celsius (mean ± 1 standard deviation) higher than rural Tw in the summer, primarily because of a weaker dynamic mixing in urban air. This Tw increment is small, but because of the high background Tw in wet climates, it is enough to cause two to six extra dangerous heat-stress days per summer for urban residents under current climate conditions. The risk of extreme humid heat is projected to increase in the future, and these urban effects may further amplify the risk.


Assuntos
Cidades , Clima , Transtornos de Estresse por Calor , Temperatura Alta , Umidade , Chuva , Humanos , Cidades/epidemiologia , Temperatura Alta/efeitos adversos , Tempo (Meteorologia) , Umidade/efeitos adversos , Fatores de Risco , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/prevenção & controle , População Rural , Modelos Climáticos , População Urbana , Estações do Ano
18.
Nature ; 614(7949): 725-731, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755097

RESUMO

Temperature is a fundamental sensory modality separate from touch, with dedicated receptor channels and primary afferent neurons for cool and warm1-3. Unlike for other modalities, however, the cortical encoding of temperature remains unknown, with very few cortical neurons reported that respond to non-painful temperature, and the presence of a 'thermal cortex' is debated4-8. Here, using widefield and two-photon calcium imaging in the mouse forepaw system, we identify cortical neurons that respond to cooling and/or warming with distinct spatial and temporal response properties. We observed a representation of cool, but not warm, in the primary somatosensory cortex, but cool and warm in the posterior insular cortex (pIC). The representation of thermal information in pIC is robust and somatotopically arranged, and reversible manipulations show a profound impact on thermal perception. Despite being positioned along the same one-dimensional sensory axis, the encoding of cool and that of warm are distinct, both in highly and broadly tuned neurons. Together, our results show that pIC contains the primary cortical representation of skin temperature and may help explain how the thermal system generates sensations of cool and warm.


Assuntos
Córtex Insular , Neurônios , Temperatura Cutânea , Córtex Somatossensorial , Animais , Camundongos , Temperatura Baixa , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Temperatura Alta , Temperatura Cutânea/fisiologia , Análise Espaço-Temporal , Córtex Insular/citologia , Córtex Insular/fisiologia
19.
Mol Cell ; 81(7): 1566-1577.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657402

RESUMO

Cas9 in complex with a programmable guide RNA targets specific double-stranded DNA for cleavage. By harnessing Cas9 as a programmable loader of superhelicase to genomic DNA, we report a physiological-temperature DNA fluorescence in situ hybridization (FISH) method termed genome oligopaint via local denaturation (GOLD) FISH. Instead of global denaturation as in conventional DNA FISH, loading a superhelicase at a Cas9-generated nick allows for local DNA denaturation, reducing nonspecific binding of probes and avoiding harsh treatments such as heat denaturation. GOLD FISH relies on Cas9 cleaving target DNA sequences and avoids the high nuclear background associated with other genome labeling methods that rely on Cas9 binding. The excellent signal brightness and specificity enable us to image nonrepetitive genomic DNA loci and analyze the conformational differences between active and inactive X chromosomes. Finally, GOLD FISH could be used for rapid identification of HER2 gene amplification in patient tissue.


Assuntos
Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Temperatura Alta , Hibridização in Situ Fluorescente , Desnaturação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/química , Linhagem Celular , Feminino , Fibroblastos/química , Fibroblastos/metabolismo , Humanos
20.
Mol Cell ; 81(16): 3294-3309.e12, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34293321

RESUMO

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.


Assuntos
Adaptação Fisiológica/genética , Proteoma/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Aclimatação/genética , Animais , Exposição Ambiental/efeitos adversos , Regulação Fúngica da Expressão Gênica/genética , Temperatura Alta/efeitos adversos , Saccharomycetales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA