Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
J Biol Chem ; 300(1): 105510, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042492

RESUMO

Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.


Assuntos
Endopeptidases , Proteínas Musculares , Tendinopatia , Tioléster Hidrolases , Idoso , Animais , Humanos , Ratos , Apoptose , Diferenciação Celular/fisiologia , Endopeptidases/metabolismo , Células-Tronco , Tendinopatia/metabolismo , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Musculares/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731971

RESUMO

Tendinopathy, characterized by inflammatory and degenerative changes, presents challenges in sports and medicine. In addressing the limitations of conservative management, this study focuses on developing tendon grafts using extrusion bioprinting with platelet-rich plasma (PRP)-infused hydrogels loaded with tendon cells. The objective is to understand paracrine interactions initiated by bioprinted tendon grafts in either inflamed or non-inflamed host tissues. PRP was utilized to functionalize methacrylate gelatin (GelMA), incorporating tendon cells for graft bioprinting. Bioinformatic analyses of overexpressed proteins, predictive of functional enrichment, revealed insights into PRP graft behavior in both non-inflamed and inflamed environments. PRP grafts activated inflammatory pathways, including Interleukin 17 (IL-17), neuroinflammation, Interleukin 33 (IL-33), and chemokine signaling. Interleukin 1 beta (IL-1b) in the graft environment triggered p38 mitogen-activated protein kinase (MAPK) signaling, nuclear factor kappa light chain enhancer of activated B cells (NF-kB) canonical pathway, and Vascular Endothelial Growth Factor (VEGF) signaling. Biological enrichment attributed to PRP grafts included cell chemotaxis, collagen turnover, cell migration, and angiogenesis. Acellular PRP grafts differed from nude grafts in promoting vessel length, vessel area, and junction density. Angiogenesis in cellular grafts was enhanced with newly synthesized Interleukin 8 (IL-8) in cooperation with IL-1b. In conclusion, paracrine signaling from PRP grafts, mediated by chemokine activities, influences cell migration, inflammation, and angiogenic status in host tissues. Under inflammatory conditions, newly synthesized IL-8 regulates vascularization in collaboration with PRP.


Assuntos
Bioimpressão , Plasma Rico em Plaquetas , Tendões , Tendões/metabolismo , Bioimpressão/métodos , Animais , Plasma Rico em Plaquetas/metabolismo , Humanos , Engenharia Tecidual/métodos , Hidrogéis/química , Alicerces Teciduais/química , Tendinopatia/metabolismo , Tendinopatia/terapia , Tendinopatia/patologia
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339145

RESUMO

Patellar tendinopathy is a common clinical problem, but its underlying pathophysiology remains poorly understood, primarily due to the absence of a representative experimental model. The most widely used method to generate such a model is collagenase injection, although this method possesses limitations. We developed an optimized rat model of patellar tendinopathy via the ultrasound-guided injection of collagenase mixed with a thermo-responsive Pluronic hydrogel into the patellar tendon of sixty male Wistar rats. All analyses were carried out at 3, 7, 14, 30, and 60 days post-injury. We confirmed that our rat model reproduced the pathophysiology observed in human patients through analyses of ultrasonography, histology, immunofluorescence, and biomechanical parameters. Tendons that were injured by the injection of the collagenase-Pluronic mixture exhibited a significant increase in the cross-sectional area (p < 0.01), a high degree of tissue disorganization and hypercellularity, significantly strong neovascularization (p < 0.01), important changes in the levels of types I and III collagen expression, and the organization and presence of intra-tendinous calcifications. Decreases in the maximum rupture force and stiffness were also observed. These results demonstrate that our model replicates the key features observed in human patellar tendinopathy. Collagenase is evenly distributed, as the Pluronic hydrogel prevents its leakage and thus, damage to surrounding tissues. Therefore, this model is valuable for testing new treatments for patellar tendinopathy.


Assuntos
Ligamento Patelar , Tendinopatia , Traumatismos dos Tendões , Humanos , Ratos , Masculino , Animais , Hidrogéis/efeitos adversos , Poloxâmero , Modelos Animais de Doenças , Ratos Wistar , Traumatismos dos Tendões/patologia , Tendinopatia/tratamento farmacológico , Tendinopatia/etiologia , Tendinopatia/metabolismo , Ligamento Patelar/diagnóstico por imagem , Ligamento Patelar/lesões , Ligamento Patelar/metabolismo , Colagenases/farmacologia
4.
J Proteome Res ; 22(6): 1712-1722, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37159428

RESUMO

Tendinopathy is a disease with surging prevalence. Lacking understanding of molecular mechanisms impedes the development of therapeutic approaches and agents. Lysine lactylation (Kla) is a newly discovered post-translational modification related to glycolysis. It has long been noted that manipulation of glycolysis metabolism could affect tendon cell function, tendon homeostasis, and healing process of tendon. However, protein lactylation sites in tendinopathy remain unexplored. Here, we conducted the first proteome-wide Kla analysis in tendon samples harvested from patients with rotator cuff tendinopathy (RCT), which identified 872 Kla sites across 284 proteins. Compared with normal counterparts, 136 Kla sites on 77 proteins were identified as upregulated in the pathological tendon, while 56 sites on 32 proteins were downregulated. Function enrichment analysis demonstrated that the majority of proteins with upregulated Kla levels functioned in organization of the tendon matrix and cholesterol metabolism, accompanied by lower expression levels which meant impaired cholesterol metabolism and degeneration of the tendon matrix, indicating potential cross-talk between protein lactylation and expression levels. At last, by western blotting and immunofluorescence, we verified the correlation between high lactylation and the downregulation of matrix and cholesterol-related proteins including BGN, MYL3, TPM3, and APOC3. ProteomeXchange: PXD033146.


Assuntos
Manguito Rotador , Tendinopatia , Humanos , Manguito Rotador/metabolismo , Manguito Rotador/patologia , Proteínas/metabolismo , Tendões/metabolismo , Tendões/patologia , Lisina/metabolismo , Tendinopatia/genética , Tendinopatia/metabolismo , Tendinopatia/patologia
5.
Cell Tissue Res ; 391(3): 523-544, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36543895

RESUMO

Tendon injuries occur commonly in both human and equine athletes, and poor tendon regeneration leads to functionally deficient scar tissue and an increased frequency of re-injury. Despite evidence suggesting inadequate resolution of inflammation leads to fibrotic healing, our understanding of the inflammatory pathways implicated in tendinopathy remains poorly understood, meaning successful targeted treatments are lacking. Here, we demonstrate IL-1ß, TNFα and IFN-γ work synergistically to induce greater detrimental consequences for equine tenocytes than when used individually. This includes altering tendon associated and matrix metalloproteinase gene expression and impairing the cells' ability to contract a 3-D collagen gel, a culture technique which more closely resembles the in vivo environment. Moreover, these adverse effects cannot be rescued by direct suppression of IL-1ß using IL-1RA or factors produced by BM-MSCs. Furthermore, we provide evidence that NF-κB, but not JNK, P38 MAPK or STAT 1, is translocated to the nucleus and able to bind to DNA in tenocytes following TNFα and IL-1ß stimulation, suggesting this signalling cascade may be responsible for the adverse downstream consequences of these inflammatory cytokines. We suggest a superior approach for treatment of tendinopathy may therefore be to target specific signalling pathways such as NF-κB.


Assuntos
Células-Tronco Mesenquimais , Tendinopatia , Humanos , Animais , Cavalos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interferon gama/metabolismo , Tenócitos/metabolismo , Tendinopatia/metabolismo , Células Cultivadas
6.
J Nanobiotechnology ; 21(1): 177, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268942

RESUMO

Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.


Assuntos
Plasma Rico em Plaquetas , Tendinopatia , Ratos , Animais , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Tendões , Tendinopatia/terapia , Tendinopatia/metabolismo , Células-Tronco , Plasma Rico em Plaquetas/metabolismo , Impressão Tridimensional
7.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069418

RESUMO

Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.


Assuntos
Tendinopatia , Tendões , Animais , Cavalos , Tendões/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismo
8.
J Cell Mol Med ; 26(12): 3483-3494, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35582962

RESUMO

Tendinopathy is mainly characterized by local pain, functional limitation and decreased athletic ability, which seriously affects the quality of life of patients and the career of athletes. Farrerol (FA), one of the main active compounds extracted from Rhododendron and plants in the Rhododendron family, has a wide range of pharmacological activities, such as immunomodulatory, anti-inflammatory and antiviral effects. However, the effect of FA on tendinopathy is unclear. Here, we investigated the pharmacological effect and mechanism of FA in tendon injury through collagenase-induced tendinopathy in vivo and RSL3-induced tenocytes injury in vitro. The results showed that FA alleviated the infiltration of inflammatory cells, promoted tenogenesis and improved mechanical properties of the Achilles tendon in rats. In addition, ferroptosis inducer RSL3 inhibits the tenogenesis in vitro and in vivo, which accelerates the progression of tendinopathy. Moreover, FA effectively inhibited iron accumulation and alleviated ferroptosis in the Achilles tendon. Using in vitro experiments, we found that FA antagonized ferroptosis by reducing lipid peroxidation and iron accumulation in tenocytes. Finally, we found that glutathione peroxidase 4 silencing could block the protective effect of FA on ferroptosis of tenocytes. Therefore, the results of this study suggest that FA can relieve collagenase-induced tendinopathy by inhibiting ferroptosis, and reveal that FA may be a potentially effective drug for the treatment of tendinopathy in the future.


Assuntos
Cromonas , Ferroptose , Tendinopatia , Animais , Cromonas/farmacologia , Colagenases/administração & dosagem , Ferroptose/efeitos dos fármacos , Humanos , Ferro/metabolismo , Qualidade de Vida , Ratos , Tendinopatia/induzido quimicamente , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163616

RESUMO

Calebin A (CA) is one of the active constituents of turmeric and has anti-inflammatory and antioxidant effects. Excessive inflammation and cell apoptosis are the main causes of tendinitis and tendinopathies. However, the role of CA in tendinitis is still unclear and needs to be studied in detail. Tenocytes in monolayer or 3D-alginate cultures in the multicellular tendinitis microenvironment (fibroblast cells) with T-lymphocytes (TN-ME) or with TNF-α or TNF-ß, were kept without treatment or treated with CA to study their range of actions in inflammation. We determined that CA blocked TNF-ß-, similar to TNF-α-induced adhesiveness of T-lymphocytes to tenocytes. Moreover, immunofluorescence and immunoblotting showed that CA, similar to BMS-345541 (specific IKK-inhibitor), suppressed T-lymphocytes, or the TNF-α- or TNF-ß-induced down-regulation of Collagen I, Tenomodulin, tenocyte-specific transcription factor (Scleraxis) and the up-regulation of NF-κB phosphorylation; thus, its translocation to the nucleus as well as various NF-κB-regulated proteins was implicated in inflammatory and degradative processes. Furthermore, CA significantly suppressed T-lymphocyte-induced signaling, similar to TNF-ß-induced signaling, and NF-κB activation by inhibiting the phosphorylation and degradation of IκBα (an NF-κB inhibitor) and IκB-kinase activity. Finally, inflammatory TN-ME induced the functional linkage between NF-κB and Scleraxis, proposing that a synergistic interaction between the two transcription factors is required for the initiation of tendinitis, whereas CA strongly attenuated this linkage and subsequent inflammation. For the first time, we suggest that CA modulates TN-ME-promoted inflammation in tenocytes, at least in part, via NF-κB/Scleraxis signaling. Thus, CA seems to be a potential bioactive compound for the prevention and treatment of tendinitis.


Assuntos
Cinamatos/farmacologia , Inflamação , Monoterpenos/farmacologia , NF-kappa B/metabolismo , Tendinopatia/tratamento farmacológico , Tenócitos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cinamatos/uso terapêutico , Curcumina/química , Humanos , Células Jurkat , Monoterpenos/uso terapêutico , Transdução de Sinais , Tendinopatia/metabolismo , Tenócitos/metabolismo
10.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955953

RESUMO

Rotator cuff tendinopathy (RCT) is the primary reason for shoulder surgery and its clinical management is still challenging. Hyaluronic acid (HA) has been shown to have anti-inflammatory effects in vitro and in vivo under RCT conditions, characterized by an exaggerated oxidative stress (OS). However, molecular mechanisms underlying HA-related effects are still partially disclosed. With these aims, a cell model of RCT was established by exposing primary human tenocytes to H2O2 for up to 72 h. Four different HAs by molecular weight were administered to measure nitric oxide (NO) and OS, apoptosis, and collagen 1 expression. In parallel, the well-known antioxidant ascorbic acid was administered for comparison. The present study highlights that HAs characterized by a low molecular weight are able to counteract the H2O2-induced OS by decreasing the percentage of apoptotic cells and reversing the activation of caspase 3 and 7. Likewise, NO intracellular levels are comparable to the ones of controls. In parallel, collagen 1 expression was ameliorated by HAs characterized by higher molecular weights compared to AA. These findings confirm that HA plays an antioxidant role comparable to AA depending on the molecular weight, and highlight the molecular mechanisms underlying the HA anti-apoptotic effects.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Tendinopatia , Tenócitos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Colágeno Tipo I/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Estresse Oxidativo , Tendinopatia/metabolismo , Tenócitos/metabolismo
11.
Curr Rheumatol Rep ; 23(3): 15, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33569739

RESUMO

PURPOSE OF REVIEW: This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis. RECENT FINDINGS: Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood. A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.


Assuntos
Tendinopatia , Traumatismos dos Tendões , Humanos , Inflamação , Tendinopatia/metabolismo , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Cicatrização
12.
Can J Physiol Pharmacol ; 99(2): 224-230, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32799660

RESUMO

The major hallmark of rotator cuff tendinopathies (RCT) is the disorganization of the tendon extracellular matrix (ECM), which is due to a decrease in the ratio of collagen I to collagen III. In addition, the pathology of the tendon matrisome remains asymptomatic, and hypoxia has been identified to be the priming signal to initiate the molecular pathology of RCT. Also, the secretome content of hypoxia-challenged tendon cells (tenocytes) reflects the pathological status of RCT. With this background, the present study was designed to establish the expression status and molecular crosstalk of the ECM component proteins contained in the exosomes of the hypoxia-challenged swine tenocytes. The mass spectrometry analysis revealed the upregulation of COL1A2, P4HA1, PRDX2, P3H1, COL6A1, PPIB, LCN1, and COL3A1 and the downregulation of COLA12, PDIA4, COLG, FN1, CTSK, and TNC in the exosomes of hypoxic tenocytes. These proteins interact with diverse proteins and operate multiple pathways associated with ECM homeostasis and repair as determined by NetworkAnalyst. The functional analysis of these proteins reflects the pathology of tendon ECM, which is correlated with the asymptomatic phase of RCT. Understanding the signaling mediated by these proteins would reveal the underlying molecular pathology and offers translational significance in the diagnosis and management of RCT.


Assuntos
Doenças Assintomáticas , Hipóxia Celular , Exossomos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Manguito Rotador/patologia , Tendinopatia/metabolismo , Tendinopatia/patologia , Animais , Colágeno/metabolismo , Humanos , Suínos
13.
Lasers Med Sci ; 36(6): 1201-1208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33037560

RESUMO

The aim of the present study was to investigate the effects of photobiomodulation (PBM) therapy on the expression of heat shock protein 70 (HSP70) and tissue repair in an experimental model of collagenase-induced Achilles tendinitis. Thirty Wistar rats (aged 12 weeks) were randomly distributed among control group (n = 8), tendinitis group (n = 11), and LED group (n = 11). Tendinitis was induced in the tendinitis and LED groups through a peritendinous injection of collagenase (100 µl). The LED group animals received the first irradiation 1 h after injury. A 630 ± 20 nm, 300-mW continuous wave light-emitting diode (LED), spot size 1 cm2, was placed in contact with the skin. One point over the tendon was irradiated for 30 s, delivering 9 J (9 J/cm2). LED irradiation was performed once daily for 7 days, with the total energy delivered being 63 J. The tendons were surgically removed and expression of the HSP70 protein was calculated using semi-quantitative analyses of immunohistochemistry (HSCORE). Number of fibroblasts and amount of collagen were measured using histological and histochemical analyses. An increase in the mean HSCORE for HSP70, in the number of fibroblasts, and in the amount of collagen were found in the LED group compared with those in the tendinitis and control group (P ≤ 0.05). PBM therapy increased the expression of the HSP70, number of fibroblasts, and amount of collagen in the acute Achilles tendinitis in rats.


Assuntos
Tendão do Calcâneo/patologia , Tendão do Calcâneo/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Choque Térmico HSP70/metabolismo , Terapia com Luz de Baixa Intensidade , Tendinopatia/metabolismo , Tendinopatia/radioterapia , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Masculino , Ratos , Ratos Wistar , Tendinopatia/patologia
14.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070692

RESUMO

Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies.


Assuntos
Matriz Extracelular/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Regeneração , Tendinopatia/metabolismo , Tendões/fisiologia , Animais , Matriz Extracelular/patologia , Feminino , Feto , Humanos , Ovinos , Tendinopatia/patologia
15.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008516

RESUMO

Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.


Assuntos
Tendão do Calcâneo/metabolismo , Biomarcadores/metabolismo , Inflamação/metabolismo , Condicionamento Físico Animal/fisiologia , Tendão do Calcâneo/fisiopatologia , Adiposidade/fisiologia , Fatores Etários , Animais , Tolerância ao Exercício/fisiologia , Feminino , Inflamação/fisiopatologia , Ratos , Corrida/fisiologia , Tendinopatia/metabolismo , Tendinopatia/fisiopatologia
16.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884602

RESUMO

Tendon lesions are common sporting injuries in humans and horses alike. The healing process of acute tendon lesions frequently results in fibrosis and chronic disease. In horses, local mesenchymal stromal cell (MSC) injection is an accepted therapeutic strategy with positive influence on acute lesions. Concerning the use of MSCs in chronic tendon disease, data are scarce but suggest less therapeutic benefit. However, it has been shown that MSCs can have a positive effect on fibrotic tissue. Therefore, we aimed to elucidate the interplay of MSCs and healthy or chronically diseased tendon matrix. Equine MSCs were cultured either as cell aggregates or on scaffolds from healthy or diseased equine tendons. Higher expression of tendon-related matrix genes and tissue inhibitors of metalloproteinases (TIMPs) was found in aggregate cultures. However, the tenogenic transcription factor scleraxis was upregulated on healthy and diseased tendon scaffolds. Matrix metalloproteinase (MMPs) expression and activity were highest in healthy scaffold cultures but showed a strong transient decrease in diseased scaffold cultures. The release of glycosaminoglycan and collagen was also higher in scaffold cultures, even more so in those with tendon disease. This study points to an early suppression of MSC matrix remodeling activity by diseased tendon matrix, while tenogenic differentiation remained unaffected.


Assuntos
Microambiente Celular , Matriz Extracelular/patologia , Doenças dos Cavalos/patologia , Células-Tronco Mesenquimais/patologia , Tendinopatia/patologia , Tendões/patologia , Alicerces Teciduais/química , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Doença Crônica , Matriz Extracelular/metabolismo , Doenças dos Cavalos/metabolismo , Cavalos , Células-Tronco Mesenquimais/metabolismo , Tendinopatia/metabolismo , Tendões/metabolismo
17.
J Biol Chem ; 294(52): 20177-20184, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31732563

RESUMO

Apoptosis has emerged as a primary cause of tendinopathy. CD44 signaling pathways exert anti-apoptotic and -inflammatory effects on tumor cells, chondrocytes, and fibroblast-like synoviocytes. The aim of this study was to examine the association among CD44, apoptosis, and inflammation in tendinopathy. Expression of CD44 and apoptotic cell numbers in tendon tissue from patients with long head of biceps (LHB) tendinopathy were determined according to the histological grades of tendinopathy. Primary tenocytes from Achilles tendon of Sprague-Dawley rats 1 week after collagenase injection were cultured with an antagonizing antibody against CD44. Treatment responses were determined by evaluating cell viability and expression of tendon-related proliferation markers, inflammatory mediators, and apoptosis. The expression of CD44 and apoptosis were positively correlated with the severity of tendinopathy in the human LHB tendinopathy. Furthermore, CD44 expression and apoptotic cells were co-stained in tendinopathic tendon. Blocking the CD44 signaling pathways in rat primary tenocytes by OX-50 induced cell apoptosis and the elevated levels of cleaved caspase-3. Furthermore, they had decreased cell viability and expression of collagen type I, type III, tenomodulin, and phosphorylated AKT. In contrast, there were elevated levels of inflammatory mediators, including interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, cyclooxygenase-2, and phosphorylated NF-κB, as well as matrix metalloproteinase (MMP) family members including MMP-1, -3, -9, and -13 in tenocytes upon OX-50 treatment. This study is the first to demonstrate the association of CD44 and apoptosis in tendinopathy. Our data imply that CD44 may play a role in tendinopathy via regulating apoptosis, inflammation, and extracellular matrix homeostasis.


Assuntos
Apoptose , Receptores de Hialuronatos/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Masculino , Metaloproteinases da Matriz/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/toxicidade , Tendinopatia/metabolismo , Tendinopatia/patologia , Tenócitos/citologia , Tenócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
J Cell Physiol ; 235(5): 4778-4789, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31637734

RESUMO

Tendinopathy is a common musculoskeletal system disorder in sports medicine, but regeneration ability of injury tendon is limited. Tendon stem cells (TSCs) have shown the definitive treatment evidence for tendinopathy and tendon injuries due to their tenogenesis capacity. Aspirin, as the representative of nonsteroidal anti-inflammatory drugs for its anti-inflammatory and analgestic actions, has been commonly used in treating tendinopathy in clinical, but the effect of aspirin on tenogenesis of TSCs is unclear. We hypothesized that aspirin could promote injury tendon healing through inducing TSCs tenogenesis. The aim of the present study is to make clear the effect of aspirin on TSC tenogenesis and tendon healing in tendinopathy, and thus provide new treatment evidence and strategy of aspirin for clinical practice. First, TSCs were treated with aspirin under tenogenic medium for 3, 7, and 14 days. Sirius Red staining was performed to observe the TSC differentiation. Furthermore, RNA sequencing was utilized to screen out different genes between the induction group and aspirin treatment group. Then, we identified the filtrated molecules and compared their effect on tenogenesis and related signaling pathway. At last, we constructed the tendinopathy model and compared biomechanical changes after aspirin intake. From the results, we found that aspirin promoted tenogenesis of TSCs. RNA sequencing showed that growth differentiation factor 6 (GDF6), GDF7, and GDF11 were upregulated in induction medium with the aspirin group compared with the induction medium group. GDF7 increased tenogenesis and activated Smad1/5 signaling. In addition, aspirin increased the expression of TNC, TNMD, and Scx and biomechanical properties of the injured tendon. In conclusion, aspirin promoted TSC tenogenesis and tendinopathy healing through GDF7/Smad1/5 signaling, and this provided new treatment evidence of aspirin for tendinopathy and tendon injuries.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células-Tronco/efeitos dos fármacos , Tendinopatia/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Modelos Animais de Doenças , Fatores de Diferenciação de Crescimento/genética , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad5/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Tendinopatia/genética , Tendinopatia/metabolismo , Tendinopatia/patologia
19.
Connect Tissue Res ; 61(3-4): 262-277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31931633

RESUMO

Background: Tendon disorders increasingly afflict our aging society but we lack the scientific understanding to clinically address them. Clinically relevant models of tendon disease are urgently needed as established small animal models of tendinopathy fail to capture essential aspects of the disease. Two-dimensional and three-dimensional cell and tissue culture models are similarly limited, lacking many physiological extracellular matrix cues required to maintain tissue homeostasis or guide matrix remodeling. These cues reflect the biochemical and biomechanical status of the tissue, and encode information regarding the mechanical and metabolic competence of the tissue. Tendon explants overcome some of these limitations and have thus emerged as a valuable tool for the discovery and study of mechanisms associated with tendon homeostasis and pathophysiology. Tendon explants retain native cell-cell and cell-matrix connections, while allowing highly reproducible experimental control over extrinsic factors like mechanical loading and nutritional availability. In this sense tendon explant models can deliver insights that are otherwise impossible to obtain from in vivo animal or in vitro cell culture models. Purpose: In this review, we aimed to provide an overview of tissue explant models used in tendon research, with a specific focus on the value of explant culture systems for the controlled study of the tendon core tissue. We discuss their advantages, limitations and potential future utility. We include suggestions and technical recommendations for the successful use of tendon explant cultures and conclude with an outlook on how explant models may be leveraged with state-of-the-art biotechnologies to propel our understanding of tendon physiology and pathology.


Assuntos
Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Modelos Biológicos , Tendinopatia/metabolismo , Tendões/metabolismo , Envelhecimento/patologia , Animais , Fenômenos Biomecânicos , Matriz Extracelular/patologia , Humanos , Tendinopatia/patologia , Tendões/patologia , Técnicas de Cultura de Tecidos
20.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207770

RESUMO

Recently, neuromediators such as substance P (SP) have been found to be important factors in tendon homeostasis. Some studies have found SP to be the cause of inflammation and tendinopathy, whereas others have determined it to be a critical component of tendon healing. As demonstrated by these conflicting findings, the effects of SP on tendinopathy remain unclear. In this study, we hypothesized that the duration of SP exposure determines its effect on the tendons, with repetitive long-term exposure leading to the development of tendinopathy. First, we verified the changes in gene and protein expression using in vitro tenocytes with 10-day exposure to SP. SP and SP + Run groups were injected with SP in their Achilles tendon every other day for 14 days. Achilles tendons were then harvested for biomechanical testing and histological processing. Notably, tendinopathic changes with decreased tensile strength, as observed in the Positive Control, were observed in the Achilles in the SP group compared to the Negative Control. Subsequent histological analysis, including Alcian blue staining, also revealed alterations in the Achilles tendon, which were generally consistent with the findings of tendinopathy in SP and SP + Run groups. Immunohistochemical analysis revealed increased expression of SP in the SP group, similar to the Positive Control. In general, the SP + Run group showed worse tendinopathic changes. These results suggest that sustained exposure to SP may be involved in the development of tendinopathy. Future research on inhibiting SP is warranted to target SP in the treatment of tendinopathy and may be beneficial to patients with tendinopathy.


Assuntos
Tendão do Calcâneo/metabolismo , Substância P/efeitos adversos , Tendinopatia/induzido quimicamente , Tendinopatia/metabolismo , Tendão do Calcâneo/patologia , Animais , Células Cultivadas , Humanos , Ratos , Ratos Sprague-Dawley , Substância P/farmacologia , Tendinopatia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA