Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Nanotechnology ; 33(15)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34959230

RESUMO

In this work, a noncovalent strategy was successfully used to modify colloidal stability andin vitroandin vivoefficacy of two amphiphilic formulations of the anti-inflammatory drug indomethacin. Namely, nanoemulsions and microemulsions based on oleic acid and nonionic surfactants have been produced and compared. The influence of cationic surfactants cetyltrimethylammonium bromide and its carbamate bearing analogue on the size characteristics, stability and ability to provide prolonged action of loaded drug indomethacin has been evaluated. Adding the positively charged molecules in the surface layer of nanoemulsions and microemulsions has shown the stability increase along with maintaining the size characteristics and homogeneity in time. Moreover, the carbamate modified analogue demonstrated beneficial behavior. Indomethacin loaded in microemulsions and nanoemulsions showed prolonged-release (10%-15% release for 5 h) compared to a free drug (complete release for 5 h). The rate of release of indomethacin from nanoemulsions was slightly higher than from microemulsions and insignificantly decreased with an increase in the concentration of the cationic surfactant. For carbamate surfactant nanocarrier loaded with fluorescence probe Nile Red, the ability to penetrate into the cell was supported by flow cytometry study and visualized by fluorescence microscopy.In vitrotests on anti-inflammatory activity of the systems demonstrated that the blood cell membrane stabilization increased in the case of modified microemulsion. The anti-inflammatory activity of the encapsulated drug was tested in rats using a carrageenan-induced edema model. Nanoemulsions without cationic surfactants appeared more efficient compared to microemulsions. Indomethacin emulsion formulations with carbamate surfactant added showed slower carrageenan-induced edema progression compared to unmodified compositions. Meanwhile, the edema completely disappeared upon treatment with emulsion loaded indomethacin after 4 h in the case of microemulsions versus 5 h in the case of nanoemulsions.


Assuntos
Anti-Inflamatórios não Esteroides , Emulsões , Indometacina , Tensoativos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Edema/metabolismo , Emulsões/química , Emulsões/farmacocinética , Humanos , Indometacina/química , Indometacina/farmacocinética , Indometacina/farmacologia , Masculino , Ratos , Ratos Wistar , Solubilidade , Tensoativos/química , Tensoativos/farmacocinética
2.
Mol Pharm ; 18(3): 952-965, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400546

RESUMO

Pharmacokinetic (PK) profiles of a range of bedaquiline (BDQ) long-acting injectable (LAI) microsuspensions in rats after parenteral (i.e., intramuscular and subcutaneous) administration were correlated with the in vitro intrinsic dissolution rate (IDR) and thermodynamic solubility of BDQ in media varying in surfactant type and concentration to better understand the impact of different nonionic surfactants on the in vivo performance of BDQ LAI microsuspensions. All LAI formulations had a similar particle size distribution. The investigated surfactants were d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), poloxamer 338, and poloxamer 188. Furthermore, the relevance of medium complexity by using a biorelevant setup to perform in vitro measurements was assessed by comparing IDR and thermodynamic solubility results obtained in biorelevant media and formulation vehicle containing different surfactants in varying concentrations. In the presence of a surfactant, both media could be applied to obtain in vivo representative dissolution and solubility data because the difference between the biorelevant medium and formulation vehicle was predominantly nonsignificant. Therefore, a more simplistic medium in the presence of a surfactant was preferred to obtain in vitro measurements to predict the in vivo PK performance of LAI aqueous suspensions. The type of surfactant influenced the PK profiles of BDQ microsuspensions in rats, which could be the result of a surfactant effect on the IDR and/or thermodynamic solubility of BDQ. Overall, two surfactant groups could be differentiated: TPGS and poloxamers. Most differences between the PK profiles (i.e., maximum concentration observed, time of maximum concentration observed, and area under the curve) were observed during the first 21 days postdose, the time period during which particles in the aqueous suspension are expected to dissolve.


Assuntos
Diarilquinolinas/química , Diarilquinolinas/farmacocinética , Suspensões/química , Suspensões/farmacocinética , Água/química , Animais , Química Farmacêutica/métodos , Excipientes/química , Excipientes/farmacocinética , Masculino , Poloxâmero/química , Poloxâmero/farmacocinética , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química , Tensoativos/farmacocinética , Termodinâmica , Vitamina E/química , Vitamina E/farmacocinética
3.
Int J Toxicol ; 40(2_suppl): 117S-133S, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225481

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 5 acyl sarcosines and 9 sarcosinate salts as used in cosmetics; all of these ingredients are reported to function in cosmetics as hair conditioning agents and most also can function as surfactants-cleansing agents. The ingredients reviewed in this assessment are composed of an amide comprising a fatty acyl residue and sarcosine and are either free acids or simple salts thereof. The Panel relied on relevant new data, including concentration of use, and considered data from the previous Panel report, such as the reaction of sarcosine with oxidizing materials possibly resulting in nitrosation and the formation of N-nitrososarcosine. The Panel concluded that these ingredients are safe as used in cosmetics when formulated to be non-irritating, but these ingredients should not be used in cosmetic products in which N-nitroso compounds may be formed.


Assuntos
Cosméticos/toxicidade , Irritantes/toxicidade , Sarcosina/toxicidade , Tensoativos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Cosméticos/química , Cosméticos/farmacocinética , Humanos , Irritantes/química , Irritantes/farmacocinética , Compostos Nitrosos/química , Medição de Risco , Sais , Sarcosina/química , Sarcosina/farmacocinética , Tensoativos/química , Tensoativos/farmacocinética
4.
Angew Chem Int Ed Engl ; 60(10): 5394-5399, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258265

RESUMO

In this study, we describe the engineering of sub-100 nm nanomicelles (DTX-PC NMs) derived from phosphocholine derivative of docetaxel (DTX)-conjugated lithocholic acid (DTX-PC) and poly(ethylene glycol)-tethered lithocholic acid. Administration of DTX-PC NMs decelerate tumor progression and increase the mice survivability compared to Taxotere (DTX-TS), the FDA-approved formulation of DTX. Unlike DTX-TS, DTX-PC NMs do not cause any systemic toxicity and slow the decay rate of plasma DTX concentration in rodents and non-rodent species including non-human primates. We further demonstrate that DTX-PC NMs target demethylation of CpG islands of Sparcl1 (a tumor suppressor gene) by suppressing DNA methyltransferase activity and increase the expression of Sparcl1 that leads to tumor regression. Therefore, this unique system has the potential to improve the quality of life in cancer patients and can be translated as a next-generation chemotherapeutic.


Assuntos
Antineoplásicos/uso terapêutico , Docetaxel/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Ácido Litocólico/análogos & derivados , Ácido Litocólico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Desmetilação , Progressão da Doença , Docetaxel/síntese química , Docetaxel/farmacocinética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Ácido Litocólico/farmacocinética , Camundongos Endogâmicos BALB C , Micelas , Neoplasias/fisiopatologia , Tensoativos/síntese química , Tensoativos/farmacocinética , Tensoativos/uso terapêutico
5.
Pharm Res ; 37(7): 144, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32666411

RESUMO

PURPOSE: To formulate and characterize nanoparticles from m-7NH-m gemini surfactants, synthesized by a new improved method, for non-invasive gene delivery including optimization of composition for transfection efficiency and corneal penetration. METHODS: A one-pot, solvent-free, DMAP-free method was developed for the synthesis of m-7NH-m (m = 12-18) gemini surfactant series. Lipoplexes (LPXs) and nanoplexes (NPXs) of gemini surfactant-plasmid DNA were formulated with and without DOPE helper lipid, respectively, at various charge ratios and characterized by dynamic light scattering and zeta potential measurements. Transfection efficiency, cellular toxicity, effect of DOPE and gene expression kinetic studies were carried out in A7 astrocytes by flow cytometry and confocal microscopy. Corneal penetration studies of 18-7NH-18 NPXs were carried out using 3D EpiCorneal® tissue model. RESULTS: The new synthesis method provides a two-fold improved yield and the production of a pure species of m-7NH-m without DMAP and trimeric m-7N(m)-m surfactants as impurities. Structure and purity was confirmed by ESI-MS, 1H NMR spectroscopy and surface tension measurements. Particle size of 199.80 ± 1.83 nm ± S.D. and a zeta potential value of +30.18 ± 1.17 mV ± S.D. was obtained for 18-7NH-18 5:1 ratio NPXs showed optimum transfection efficiency (10.97 ± 0.11%) and low toxicity (92.97 ± 0.57% viability) at the 48-h peak expression. Inclusion of DOPE at 1: 0.5 and 1:1 ratios to gemini surfactant reduced transfection efficiency and increased toxicity. Treatment of EpiCorneal® tissue model showed deep penetration of up to 100 µm with 18-7NH-18 NPXs. CONCLUSION: Overall, 18-7NH-18 NPXs are potential gene delivery systems for ophthalmic gene delivery and for further in vivo studies.


Assuntos
Córnea/metabolismo , Técnicas de Transferência de Genes , Tensoativos/química , Tensoativos/farmacologia , Administração Oftálmica , Animais , Astrócitos/metabolismo , Linhagem Celular , DNA/administração & dosagem , DNA/química , Composição de Medicamentos , Expressão Gênica , Terapia Genética , Nanopartículas , Fosfatidiletanolaminas/química , Plasmídeos/química , Ratos , Tensoativos/farmacocinética
6.
Dermatol Surg ; 46(2): 249-257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569112

RESUMO

BACKGROUND: Varicose veins are common clinical entities. Foam sclerotherapy is a minimally invasive and simple procedure; however, the side effects, efficacy, and stability of sclerosing foam are not ideal. OBJECTIVE: To summarize the current studies on sclerosing foam stability and promote foam sclerotherapy development. MATERIALS AND METHODS: We reviewed the literature before June 2018 and included only representatives studies on sclerosing foam stability. We summarized the foam half-life time (FHT) of polidocanol (POL) under 17 preparation conditions and the FHT of sodium tetradecyl sulfate under 21 preparation conditions. The preparation conditions included various combinations of temperature, liquid-gas ratio, preparation method, etc. RESULTS: The FHT of POL varied between 40 and 4,000 seconds under different conditions. The FHT of sodium tetradecyl sulfate varied from 25.7 to 390 seconds. The higher the drug concentration, the lower the temperature required to increase foam stability. The addition of surfactant greatly increased foam stability. For different gas compositions, the FHT sequence was as follows: CO2 < CO2 + O2 < O2 < air. CONCLUSION: Foam stability can be improved by changing the preparation conditions; therefore, the role of surfactants and predictive methods for FHT are worth investigating further.


Assuntos
Gases/farmacocinética , Soluções Esclerosantes/farmacocinética , Escleroterapia/métodos , Tensoativos/farmacocinética , Varizes/terapia , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Gases/administração & dosagem , Gases/química , Meia-Vida , Humanos , Injeções Intravenosas , Polidocanol/administração & dosagem , Polidocanol/química , Polidocanol/farmacocinética , Soluções Esclerosantes/administração & dosagem , Soluções Esclerosantes/química , Tetradecilsulfato de Sódio/administração & dosagem , Tetradecilsulfato de Sódio/química , Tetradecilsulfato de Sódio/farmacocinética , Tensoativos/administração & dosagem , Tensoativos/química , Temperatura , Fatores de Tempo
7.
Int J Toxicol ; 39(2_suppl): 26S-58S, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32975154

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 60 PEGylated alkyl glycerides. PEGylated alkyl glycerides are mono-, di-, and/or triglycerides that have been modified with ethylene glycol repeat units (in the starting material form as epoxide). Most of the PEGylated alkyl glycerides are reported to function as skin-conditioning agents or surfactants. The Panel reviewed the available animal and clinical data as well as data from the 1999 report for the 5 polyethylene glycol (PEG) glyceryl cocoates and the 2012 report of PEGylated oils, to determine the safety of these ingredients. The Panel concluded these ingredients are safe in the current practices of use and concentration when formulated to be nonirritating; this conclusion supersedes the 1999 conclusion issued on 5 PEG glyceryl cocoate ingredients.


Assuntos
Fármacos Dermatológicos/toxicidade , Glicerídeos/toxicidade , Polietilenoglicóis/toxicidade , Tensoativos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Cosméticos , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Glicerídeos/química , Glicerídeos/farmacocinética , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Medição de Risco , Tensoativos/química , Tensoativos/farmacocinética , Testes de Toxicidade
8.
J Pharm Pharm Sci ; 22(1): 221-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31219781

RESUMO

This study investigates the influence of surfactant sodium lauryl sulfate (SLS) on the solubility of poorly-water soluble drug substances, model Compound X and Compound Y, used in a fixed dose combination oral solid dosage form. To determine the impact of SLS concentration on the solubility of compounds X and Y, we experimentally determined the critical micelle concentration (CMC) of SLS in water, simulated gastric fluid (SGF), and fed state simulated intestinal fluid (FeSSIF) in the presence of Compound X and Compound Y using UV/Visible spectrophotometry at 25°C. The aggregation of SLS was characterized by calculating the standard Gibbs free energy of micellization in all the media investigated.  To enhance the understanding of SLS aggregation, high throughput experiments and in-vivo mechanistic modelling were used to determine the effect of increasing levels of SLS on the solubility of compounds X and Y as both single agent and combination products to be formulated into a suitable oral solid dosage form. Micellar formation of SLS is a spontaneous process as shown by the negative values of the standard free energy of micellization. The CMC of SLS in the various media investigated in the presence of compounds X and Y decreases in the following order: water> FeSSIF> SGF. However, the aggregation of SLS in the various media is overall more spontaneous in the following order: SGF>FeSSIF>water. Using high throughput experimentation and in-vivo mechanistic modelling, it was determined that a combination oral solid product of compounds X and Y will have optimum solubility and in-vivo absorption if 2 mg of SLS was used in the oral solid dosage form.  The results obtained from this study will help broaden the understanding of the micellization process involving SLS and poorly-water soluble drugs used in combination oral solid dosage forms.


Assuntos
Absorção Intestinal , Modelos Biológicos , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacocinética , Tensoativos/química , Tensoativos/farmacocinética , Células CACO-2 , Humanos , Secreções Intestinais/química , Micelas , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Solubilidade , Água/química
9.
Regul Toxicol Pharmacol ; 108: 104452, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487490

RESUMO

Perfluorohexane sulfonate (PFHxS) is a six-carbon perfluoroalkyl sulfonic acid that was used as an industrial surfactant, but is now found as an environmental contaminant worldwide. In addition to its use as an industrial surfactant, it is a legacy contaminant from the use of aqueous film-forming foams. Despite its widespread occurrence in the environment and evidence of biological activity associated with PFHxS and similar perfluoroalkyl sulfonic acids in rodents, there is no oral toxicity value currently available from the IRIS Database. To derive an oral reference dose (RfD) for PFHxS, available toxicity studies were reviewed using a weight-of-evidence approach. A 42-day mouse reproductive study was chosen as the critical study for the derivation of the oral RfD. Benchmark dose modeling was utilized to derive a point of departure (POD) for a reduction in litter size. A 95% lower confidence limit on the benchmark dose (BMDL) of 13,900 ng/mL (serum PFHxS) was modeled for a reduction in litter size. An oral RfD for PFHxS of 4.0 ng/kg/d was calculated by conversion of the BMDL to a human equivalent oral dose using a human half-life adjusted dosimetric conversion factor and the application of a total uncertainty factor of 300. Additional research is needed to better characterize the toxicity associated with oral exposure to PFHxS and refine the development of toxicity values.


Assuntos
Ácidos Sulfônicos/normas , Tensoativos/normas , Administração Oral , Animais , Fluorocarbonos , Humanos , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Concentração Máxima Permitida , Camundongos , Reprodução/efeitos dos fármacos , Medição de Risco , Ácidos Sulfônicos/farmacocinética , Ácidos Sulfônicos/toxicidade , Tensoativos/farmacocinética , Tensoativos/toxicidade
10.
Skin Pharmacol Physiol ; 32(4): 224-234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31203277

RESUMO

BACKGROUND: Zinc pyrithione (ZnPT) is deposited on the skin as a fine particulate and must reach microorganisms localized in the stratum corneum and hair follicles in molecular form to exert its broad-spectrum antimicrobial/antifungal activity. Dissolution of ZnPT particles followed by molecular speciation results in the organic portion, i.e. pyrithione, being more susceptible to skin penetration than the inorganic component, i.e. zinc, or the chelate itself, i.e. ZnPT. OBJECTIVES: To further test the hypothesis that ZnPT skin penetration is rate-limited by dissolution and molecular speciation, the effect of different formulations and artificial sebum on the in vitro percutaneous absorption of radiolabel associated with Zn[14C]PT was investigated. METHOD: In vitro penetration of [14C]PT into and through excised human skin was measured following application of Zn[14C]PT prepared as suspensions in distinct vehicles including water-based carboxymethylcellulose (CMC), diluted body wash comprised of surfactants, and castor oil, in the presence and absence of artificial sebum. RESULTS: The steady-state flux and cumulative absorption of Zn[14C]PT increased 4- to 5-fold when deposited from a body wash or castor oil compared to a water-based CMC suspension. Tritiated water flux measured before and after treatment showed that neither the surfactant vehicle nor castor oil significantly altered barrier function versus water alone. An artificial sebum layer on the skin potentiated Zn[14C]PT and 3H2O absorption when dosed from both aqueous formulations, but not from castor oil. CONCLUSION: These data are consistent with the hypothesis that ZnPT percutaneous absorption, as measured by [14C]PT kinetics, is controlled by particle dissolution and molecular speciation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Compostos Organometálicos/farmacocinética , Piridinas/farmacocinética , Sebo/fisiologia , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Carboximetilcelulose Sódica/farmacocinética , Óleo de Rícino/farmacocinética , Humanos , Solubilidade , Tensoativos/farmacocinética
11.
Int J Toxicol ; 38(2_suppl): 12S-32S, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31522649

RESUMO

The Expert Panel assessed the safety of 28 alkyl phosphates and concluded that these ingredients are safe in the current practices of use and concentration when formulated to be nonirritating. The ingredients in the alkyl phosphate family share a common phosphate core structure, and vary by the identity of the alkyl chains attached therein. Most of the alkyl phosphates function as surfactants in cosmetic ingredients; however, the triesters function as plasticizers rather than surfactants. The Panel reviewed the available animal and clinical data to determine the safety of these ingredients.


Assuntos
Cosméticos/toxicidade , Fosfatos/toxicidade , Tensoativos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Humanos , Fosfatos/farmacocinética , Tensoativos/farmacocinética , Testes de Toxicidade , Toxicocinética
12.
Int J Cosmet Sci ; 41(1): 55-66, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30636015

RESUMO

OBJECTIVE: Once penetrated into the stratum corneum, anionic surfactants bind to and denature stratum corneum proteins as well as intercalate into and extract intercellular lipids. With repeated exposures, this leads to skin dryness and irritation, compromising barrier function and skin health. The mechanisms of anionic surfactant penetration into the skin, however, are still widely debated. The objective of this study was to evaluate current theories of surfactant penetration into human skin. METHODS: A test set comprising 15 anionic surfactant systems and one non-ionic surfactant, all having either dodecyl or lauryl alkyl chains, was tested for surfactant penetration into split-thickness human cadaver skin in vitro using radiolabelled sodium dodecyl sulphate (14 C-SDS). Select physical properties of these formulations thought to be associated with skin penetration including critical micelle concentration, micelle diameter, filtrate concentration and zeta potential were also measured. RESULTS: 14 C-SDS penetration into human cadaver skin from surfactant systems in vitro was found to correlate well with CMC (R2  = 0.34, P < 0.05), filtrate concentration (R2  = 0.36, P < 0.05) and zeta potential (R2  = 0.76, P < 0.001), but poorly with micelle diameter (R2  = 0.12). Furthermore, the latter measure correlated inversely with penetration compared to what would be expected based on the micelle penetration theory. CONCLUSION: Neither monomer nor micelle penetration theories are sufficient to explain anionic surfactant penetration into human skin. Submicellar (or premicellar) aggregate penetration theory is difficult to defend at relevant surfactant concentrations. We propose a new hypothesis for this mechanism in which short-term penetration is based on monomer concentration and longer term penetration is based on surfactant-induced damage to the skin barrier.


OBJECTIF: Une fois pénétrés dans la couche cornée, les tensioactifs anioniques se lient aux protéines de la couche cornée, le dénaturent, s'intercalent dans les lipides intercellulaires et les extraient. Avec des expositions répétées, ceci entraîne un assèchement et une irritation de la peau, compromettant ainsi la fonction de barrière et la santé de la peau. Les mécanismes de pénétration du tensioactif anionique dans la peau restent toutefois largement débattus. L'objectif de cette étude est d'évaluer les théories actuelles de la pénétration de surfactant dans la peau humaine. MÉTHODES: Un ensemble de contrôle comprenant 15 systèmes de tensioactifs anioniques et un tensioactif non ionique, tous possédant des chaînes dodécyles ou lauryle alkyles, a été testé vis-à-vis de la pénétration du tensioactif dans la peau d'un cadavre humain partiellement épaisse in vitro en utilisant du sulfate de sodium dodécyl radiomarqué (14 C-SDS). Certaines propriétés physiques de ces formulations supposées être associées à la pénétration dans la peau, notamment la concentration critique micellaires, le diamètre des micelles, la concentration de filtrat, et le potentiel zêta, ont également été mesurées. RÉSULTATS: La pénétration du 14 C-SDS dans la peau de cadavre humain provenant de systèmes de tensioactifs in vitro était bien corrélée avec la CMC (R2  = 0,34, P < 0,05), la concentration de filtrat (R2  = 0,36, P < 0,05) et le potentiel zêta (R2  = 0,76, P < 0,001), mais faiblement avec un diamètre de micelle (R2  = 0,12). De plus, cette dernière mesure était inversement corrélée à la pénétration par rapport à ce que l'on pouvait attendre de la théorie de la pénétration des micelles. CONCLUSION: Ni les théories de pénétration de monomères ni de micelles ne sont suffisantes pour expliquer la pénétration de tensioactif anionique dans la peau humaine. La théorie de la pénétration des agrégats submicellaires (ou prémicellaires) est difficile à défendre aux concentrations pertinentes de surfactant. Nous proposons une nouvelle hypothèse pour ce mécanisme dans laquelle la pénétration à court terme est basée sur la concentration en monomères et la pénétration à plus long terme est basée sur les dommages à la barrière cutanée induits par les tensioactifs.


Assuntos
Ânions/química , Micelas , Absorção Cutânea , Pele/metabolismo , Tensoativos/farmacocinética , Radioisótopos de Carbono/farmacocinética , Humanos , Dodecilsulfato de Sódio/farmacocinética , Tensoativos/química
13.
Pharmazie ; 74(3): 136-141, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30961677

RESUMO

In a previous study, it was shown, that shed snake skin is a good alternative model membrane for the human stratum corneum (SC). In this study, the influence of the enhancers dimethyl sulfoxide (DMSO), 1,2-propanediol, 1,3-butanediol, 1,2-pentanediol, 1,2-hexanediol and 1,2-octanediol in a concentration of 10 % on the permeation of l-prolyl- l-lysyl-l-α-glutamyl-l-lysin (PKEK) through shed snake skin was conducted. Pharmacokinetic parameters (diffusion coefficient, permeation coefficient, t-lag, Flux) were calculated. All examinations were performed on the skin of an individual and thus allowed a very good comparability of the data. All enhancers have overcome the shed snake skin and could be proven in the acceptor. DMSO does not affect the permeability of the membrane. Nevertheless, PKEK permeates faster in the presence of DMSO than PKEK being used alone. PKEK permeated the same, no matter if an auxiliary material was added or not. Without their addition, in all other enhancers no significant difference towards permeation could be determined.


Assuntos
Portadores de Fármacos/administração & dosagem , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Pele/efeitos dos fármacos , Pele/metabolismo , Serpentes/metabolismo , Administração Cutânea , Animais , Butileno Glicóis/farmacologia , Coloides/administração & dosagem , Difusão , Dimetil Sulfóxido/farmacologia , Portadores de Fármacos/química , Composição de Medicamentos , Glicóis/farmacologia , Hexanos/farmacologia , Modelos Animais , Octanóis/farmacologia , Oligopeptídeos/química , Pentanos/farmacologia , Permeabilidade/efeitos dos fármacos , Propilenoglicol/farmacologia , Absorção Cutânea/efeitos dos fármacos , Tensoativos/administração & dosagem , Tensoativos/química , Tensoativos/farmacocinética
14.
AAPS PharmSciTech ; 20(2): 46, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617602

RESUMO

This research aimed to study the correlation between miscibility of flutamide (FLT), lipids and surfactant on the particle size of solid lipid nanoparticles (SLNs). Physical mixtures (PMs) of lipids-glyceryl monooleate (GMO), Precirol® (glyceryl palmitostearate, PRE), glyceryl monostearate (GMS), and Compritol® (glyceryl dibehenate, COM) were prepared with surfactant-Gelucire® (stearoyl polyoxyl-32 glycerides, GEL) 50/13 and 44/14. PMs were prepared in 5:2 w/w ratio (lipid:surfactant) and 2:1 w/w (Flutamide (FLT):lipids/GEL 50/13) by co-melting. Miscibility of PMs was investigated using modulated differential scanning calorimetry (MDSC). SLNs with and without drug were prepared using GEL 50/13 by the ultra-sonication method and particle size analysis was conducted. PMs of GMO, GMS, and PRE with both surfactants showed a decrease in the melting temperature, no change in melting and crystallization peak was observed with COM-GELs, indicating immiscibility. Similarly, MDSC data suggests good miscibility of FLT in GMO, GMS, and GEL 50/13 but not in PRE and COM. The particle size of drug-loaded SLNs prepared from GMO and GMS with GEL 50/13 was found to be 70.2 ± 5.4 and 92.6 ± 8.5 compared to > 200-nm particles obtained from PRE and COM. On lyophilization, an increase in particles size was observed with COM only. The particle size of SLNs with PRE and COM was prominently increased during stability studies indicating SLNs prepared with GMO and GMS are more stable due to miscibility and ability to reduce the crystallinity of FLT. The results established a good correlation between drug, lipids, and surfactants miscibility to the obtained particle size of SLNs before and after lyophilization. Graphical Abstract ᅟ.


Assuntos
Desenvolvimento de Medicamentos/métodos , Lipídeos/química , Nanopartículas/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Glicerídeos/química , Glicerídeos/farmacocinética , Lipídeos/farmacocinética , Nanopartículas/metabolismo , Tamanho da Partícula , Solubilidade , Tensoativos/farmacocinética
15.
AAPS PharmSciTech ; 20(5): 198, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127389

RESUMO

In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that ∼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Apoptose/efeitos dos fármacos , Citotoxinas/síntese química , Nanosferas/química , Paclitaxel/síntese química , Óleos de Plantas/síntese química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/farmacocinética , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Células HeLa , Humanos , Mentha piperita , Paclitaxel/farmacocinética , Óleos de Plantas/farmacocinética , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacocinética , Tensoativos/síntese química , Tensoativos/farmacocinética , Vitamina E/síntese química , Vitamina E/farmacocinética
16.
AAPS PharmSciTech ; 20(3): 102, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723877

RESUMO

The purpose of this work is to investigate the effects of polymer/surfactant as carriers on the solubility and dissolution of fenofibrate solid dispersions (FF SDs) with the aid of systematic research on the physicochemical properties of the polymer/surfactant system and further highlight the importance of studying polymer/surfactant interaction in the preformulation. The critical micelle concentration (CMC) of sodium lauryl sulfate (SLS) and critical aggregation concentration (CAC) of polymer/SLS solutions were obtained through conductivity measurement. Meanwhile, surface tension, viscosity, morphology, and wettability of polymer/SLS with different weight ratios of SLS were analyzed to screen out the suitable content of SLS (weight%, 5% in carriers) incorporated in SDs. Polymer/SLS coprecipitate and FF SDs were prepared by the solvent evaporation method. The results from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that FF was molecularly dispersed in SDs. Compared to the solubility of FF in povidone/SLS (PVP/SLS) solutions, the increment of FF solubility in copovidone/SLS (VA64/SLS) solutions was due to the formation of free SLS micelles, which have been confirmed by transmission electron microscopy (TEM). Particularly, the wettability of FF SDs and physical mixtures (PMs) was also determined by the sessile drop technique. A linear relationship between the wettability of carriers and that of FF SDs was found, which revealed the significant role of carriers on the surface composition of FF SDs. As the molecular weight of PVP increased, the wettability of carriers decreased, thus leading to the reduction of the dissolution rate of SDs. Although the presence of SLS did not enhance the dissolution of FF SDs, it increased the amount of drug released at the initial stage. All these results indicated that the polymer/SLS interaction would affect the performance of SDs; hence, it was necessary to study their properties in the preformulation.


Assuntos
Portadores de Fármacos/química , Fenofibrato/química , Hipolipemiantes/química , Polímeros/química , Tensoativos/química , Cristalografia por Raios X/métodos , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Fenofibrato/administração & dosagem , Fenofibrato/farmacocinética , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacocinética , Polímeros/administração & dosagem , Polímeros/farmacocinética , Solubilidade , Tensão Superficial/efeitos dos fármacos , Tensoativos/administração & dosagem , Tensoativos/farmacocinética , Molhabilidade/efeitos dos fármacos , Difração de Raios X/métodos
17.
Planta Med ; 84(12-13): 976-984, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29689586

RESUMO

A microemulsion system was developed and investigated as a novel oral formulation to increase the solubility and absorption of Salicis cortex extract. This extract possesses many pharmacological activities, in particular, it is beneficial for back pain and osteoarthritic and rheumatic complaints. In this work, after qualitative and quantitative characterization of the extract and the validation of an HPLC/diode array detector analytical method, solubility studies were performed to choose the best components for microemulsion formulation. The optimized microemulsion consisted of 2.5 g of triacetin, as the oil phase, 2.5 g of Tween 20 as the surfactant, 2.5 g of labrasol as the cosurfactant, and 5 g of water. The microemulsion was visually checked, characterized by light scattering techniques and morphological observations. The developed formulation appeared transparent, the droplet size was around 40 nm, and the ζ-potential result was negative. The maximum loading content of Salicis cortex extract resulted in 40 mg/mL. Furthermore, storage stability studies and an in vitro digestion assay were performed. The advantages offered by microemulsion were evaluated in vitro using artificial membranes and cells, i.e., parallel artificial membrane permeability assay and a Caco-2 model. Both studies proved that the microemulsion was successful in enhancing the permeation of extract compounds, so it could be useful to ameliorate the bioefficacy of Salicis cortex.


Assuntos
Álcoois Benzílicos/farmacocinética , Glucosídeos/farmacocinética , Extratos Vegetais/farmacocinética , Salix/química , Tensoativos/farmacocinética , Álcoois Benzílicos/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Emulsões , Flavanonas/química , Flavanonas/farmacocinética , Glucosídeos/química , Glicerídeos , Humanos , Membranas Artificiais , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/química , Polissorbatos , Salicilatos/química , Salicilatos/farmacocinética , Ácido Salicílico/química , Ácido Salicílico/farmacocinética , Solubilidade/efeitos dos fármacos , Tensoativos/química
18.
Odontology ; 106(4): 454-459, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29594826

RESUMO

The aim of this study was to compare the effects of Manual Dynamic Agitation and Passive Ultrasonic Irrigation on sodium hypochlorite (NaOCl) penetration into dentinal tubules using its bleaching ability. Thirty-four single-rooted teeth with round-shaped root canals were distributed in two homogeneous groups and one control group, characterized by different NaOCl activation systems: Manual Dynamic Agitation and Passive Ultrasonic Irrigation. After instrumentation, all root canals were stained with 10% copper sulphate solution followed by 1% rubeanic acid alcohol solution under vacuum. Final irrigation was performed with 5 mL of 5.25% NaOCl solution for 1 min and activated with Manual Dynamic Agitation or Passive Ultrasonic Irrigation for another 1 min depending on the treatment group. The teeth were transversely sectioned at the middle portion of the apical, middle, and coronal thirds and observed under light microscope. NaOCl solution penetration was evaluated by measuring the percentage of bleached circumference of the root canal relative to the stained circumference, bleached areas, mean, and maximum penetration depth. No differences in the evaluated parameters were observed between groups (p > 0.05). Within groups, an increase of values was recorded from apical to coronal direction as for percentage of staining, percentage of bleaching and bleached area. NaOCl penetration into dentinal tubules did not significantly vary among the three levels. No significant differences in penetration of sodium hypochlorite into dentinal tubules when activated by means of Manual Dynamic Agitation or Passive Ultrasonic Irrigation were observed in the apical, middle, and coronal thirds of teeth with single straight round root canals.


Assuntos
Dentina/efeitos dos fármacos , Irrigantes do Canal Radicular/farmacocinética , Hipoclorito de Sódio/farmacocinética , Ultrassom , Humanos , Técnicas In Vitro , Coloração e Rotulagem , Tensoativos/farmacocinética , Irrigação Terapêutica
19.
AAPS PharmSciTech ; 19(4): 1582-1591, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29488194

RESUMO

The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.


Assuntos
Celulose/análogos & derivados , Liberação Controlada de Fármacos , Tensoativos/química , Tensoativos/farmacocinética , Celulose/química , Celulose/farmacocinética , Metformina/química , Metformina/farmacocinética , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacocinética , Solubilidade , Comprimidos , Molhabilidade
20.
AAPS PharmSciTech ; 19(7): 3040-3047, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30084069

RESUMO

Surfactants are commonly incorporated in conventional and enabled formulations to enhance the rate and extent of dissolution of drugs exhibiting poor aqueous solubility. Generally the interactions between the drug and excipients are systematically evaluated, however, limited attention is paid towards understanding the effect of interaction between functional excipients and its impact on the performance of the product. In the current study, the effect of potential interaction between a nonionic polymer binder, povidone, and anionic surfactant docusate sodium on the rate and extent of dissolution of a drug exhibiting poor aqueous solubility was evaluated by varying the proportions of the binder and the surfactant in the formulation. Potential complexation or aggregation between the excipients was investigated by fluorescence spectroscopy and zeta potential measurements of the aqueous solutions of docusate sodium, povidone, and sodium lauryl sulfate (SLS). The rate and extent of drug release was found to decrease with an increase in the proportion of docusate sodium and povidone in the formulations. Difference in magnitude of surface charge (zeta potential) of docusate sodium in presence of povidone indicated potential surfactant-polymer aggregation during dissolution which was corroborated by CAC/CMC values derived from fluorescence spectroscopic measurements. The decrease in the rate of drug release was attributed to an increase in the viscosity of the microenvironment of dissolving particles due to the interaction of docusate sodium and povidone in the aqueous media during dissolution. These findings highlight the importance of systematic evaluation of the interaction of ionic surfactants with the polymeric components within the formulation to ensure the appropriate selection of the type of surfactant as well as its proportion in the formulation.


Assuntos
Liberação Controlada de Fármacos , Polímeros/química , Tensoativos/química , Interações Medicamentosas/fisiologia , Liberação Controlada de Fármacos/fisiologia , Concentração Osmolar , Polímeros/farmacocinética , Povidona/química , Povidona/farmacocinética , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacocinética , Solubilidade , Tensoativos/farmacocinética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA