Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.610
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 630(8015): 91-95, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778107

RESUMO

The strength of materials depends on the rate at which they are tested, as defects, for example dislocations, that move in response to applied strains have intrinsic kinetic limitations1-4. As the deformation strain rate increases, more strengthening mechanisms become active and increase the strength4-7. However, the regime in which this transition happens has been difficult to access with traditional micromechanical strength measurements. Here, with microballistic impact testing at strain rates greater than 106 s-1, and without shock conflation, we show that the strength of copper increases by about 30% for a 157 °C increase in temperature, an effect also observed in pure titanium and gold. This effect is counterintuitive, as almost all materials soften when heated under normal conditions. This anomalous thermal strengthening across several pure metals is the result of a change in the controlling deformation mechanism from thermally activated strengthening to ballistic transport of dislocations, which experience drag through phonon interactions1,8-10. These results point to a pathway to better model and predict materials properties under various extreme strain rate conditions, from high-speed manufacturing operations11 to hypersonic transport12.


Assuntos
Cobre , Ouro , Temperatura , Titânio , Ouro/química , Titânio/química , Estresse Mecânico , Teste de Materiais , Fônons , Metais/química , Temperatura Alta
2.
Methods ; 225: 74-88, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493931

RESUMO

Computational modeling and simulation (CM&S) is a key tool in medical device design, development, and regulatory approval. For example, finite element analysis (FEA) is widely used to understand the mechanical integrity and durability of orthopaedic implants. The ASME V&V 40 standard and supporting FDA guidance provide a framework for establishing model credibility, enabling deeper reliance on CM&S throughout the total product lifecycle. Examples of how to apply the principles outlined in the ASME V&V 40 standard are important to facilitating greater adoption by the medical device community, but few published examples are available that demonstrate best practices. Therefore, this paper outlines an end-to-end (E2E) example of the ASME V&V 40 standard applied to an orthopaedic implant. The objective of this study was to illustrate how to establish the credibility of a computational model intended for use as part of regulatory evaluation. In particular, this study focused on whether a design change to a spinal pedicle screw construct (specifically, the addition of a cannulation to an existing non-cannulated pedicle screw) would compromise the rod-screw construct mechanical performance. This question of interest (?OI) was addressed by establishing model credibility requirements according to the ASME V&V 40 standard. Experimental testing to support model validation was performed using spinal rods and non-cannulated pedicle screw constructs made with medical grade titanium (Ti-6Al-4V ELI). FEA replicating the experimental tests was performed by three independent modelers and validated through comparisons of common mechanical properties such as stiffness and yield force. The validated model was then used to simulate F1717 compression-bending testing on the new cannulated pedicle screw design to answer the ?OI, without performing any additional experimental testing. This E2E example provides a realistic scenario for the application of the ASME V&V 40 standard to orthopedic medical device applications.


Assuntos
Análise de Elementos Finitos , Parafusos Pediculares , Parafusos Pediculares/normas , Humanos , Simulação por Computador , Teste de Materiais/métodos , Teste de Materiais/normas , Titânio/química , Força Compressiva
3.
Biopolymers ; 115(3): e23572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491802

RESUMO

As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of Argiope bruennichi spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without Aloe vera coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. A. bruennichi silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. A. bruennichi spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of A. bruennichi spider silk and A. vera coated commercial suture groups have comparable structural results with control group. In conclusion, A. bruennichi spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.


Assuntos
Materiais Biocompatíveis , Seda , Aranhas , Cicatrização , Animais , Seda/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Aranhas/química , Ratos , Camundongos , Linhagem Celular , Cicatrização/efeitos dos fármacos , Masculino , Difração de Raios X , Teste de Materiais , Suturas , Espalhamento a Baixo Ângulo , Pele/efeitos dos fármacos , Ratos Wistar
4.
Biomacromolecules ; 25(4): 2312-2322, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456765

RESUMO

Local delivery of pain medication can be a beneficial strategy to address pain management after joint replacement, as it can decrease systemic opioid usage, leading to less side and long-term effects. In this study, we used ultrahigh molecular weight polyethylene (UHMWPE), commonly employed as a bearing material for joint implants, to deliver a wide set of analgesics and the nonsteroidal anti-inflammatory drug tolfenamic acid. We blended the drugs with UHMWPE and processed the blend by compression molding and sterilization by low-dose gamma irradiation. We studied the chemical stability of the eluted drugs, drug elution, tensile properties, and wear resistance of the polymer blends before and after sterilization. The incorporation of bupivacaine hydrochloride and tolfenamic acid in UHMWPE resulted in either single- or dual-drug loaded materials that can be sterilized by gamma irradiation. These compositions were found to be promising for the development of clinically relevant drug-eluting implants for joint replacement.


Assuntos
Artroplastia de Substituição , ortoaminobenzoatos , Teste de Materiais , Polietilenos/química , Analgésicos , Anti-Inflamatórios não Esteroides
5.
Biomacromolecules ; 25(6): 3475-3485, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741285

RESUMO

Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff ß-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.


Assuntos
Alginatos , Regeneração Óssea , Resistência à Tração , Alginatos/química , Regeneração Óssea/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Ácido Glucurônico/química , Teste de Materiais , Ácidos Hexurônicos/química , Alicerces Teciduais/química
6.
Soft Matter ; 20(7): 1573-1582, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270546

RESUMO

To avoid the potential toxicity of monomer residues in synthetic polymer based organohydrogels, natural polysaccharide-based organohydrogels are expected to be used in multi-functional wearable sensory systems, but most of them have unsatisfactory stiffness, strength and fracture toughness. Herein, a cooking and soaking strategy is proposed to prepare novel natural polysaccharide-based organohydrogels possessing outstanding stiffness, strength, toughness, freezing resistance, heating resistance and long-term durability. The agar organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 2.26 MPa and a fracture toughness of 14.8 kJ m-2, the κ-carrageenan organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 4.34 MPa and a fracture toughness of 11.0 kJ m-2, and the gellan organohydrogel exhibits a fracture stress of 1.2 MPa, a Young's modulus of 2.81 MPa and a fracture toughness of 5.4 kJ m-2. Furthermore, the agar organohydrogels are assembled into multi-functional wearable sensors by introducing NaCl as a conducting agent exhibiting responses to strain (5-150%), temperature (-15 to 60 °C) and humidity (11-97%), and possessing exceptional multi-sensory capabilities. Therefore, the developed strategy has shown a new pathway towards strengthening polysaccharide-based organohydrogels with potential for application in wearable sensory systems.


Assuntos
Polissacarídeos , Teste de Materiais , Umidade , Temperatura , Ágar
7.
Soft Matter ; 20(26): 5095-5104, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888165

RESUMO

The mechanical properties of soft gels hold significant relevance in biomedicine and biomaterial design, including the development of tissue engineering constructs and bioequivalents. It is important to adequately characterize the gel's mechanical properties since they play a role both in the overall structural properties of the construct and the physiological responses of cells. The question remains which approach for the mechanical characterization is most suitable for specific biomaterials. Our investigation is centered on the comparison of three types of gels and four distinct mechanical testing techniques: shear rheology, compression, microindentation, and nanoindentation by atomic force microscopy. While analyzing an elastic homogeneous synthetic hydrogel (a polyacrylamide gel), we observed close mechanical results across the different testing techniques. However, our findings revealed more distinct outcomes when assessing a highly viscoelastic gel (Ecoflex) and a heterogeneous biopolymer hydrogel (enzymatically crosslinked gelatin). To ensure precise data interpretation, we introduced correction factors to account for the boundary conditions inherent in many of the testing methods. The results of this study underscore the critical significance of considering both the temporal and spatial scales in mechanical measurements of biomaterials. Furthermore, they encourage the employment of a combination of diverse testing techniques, particularly in the characterization of heterogeneous viscoelastic materials such as biological samples. The obtained results will contribute to the refinement of mechanical testing protocols and advance the development of soft gels for tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Materiais Biocompatíveis/química , Hidrogéis/química , Elasticidade , Reologia , Viscosidade , Resinas Acrílicas/química , Gelatina/química , Engenharia Tecidual
8.
Wound Repair Regen ; 32(3): 229-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38534045

RESUMO

The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.


Assuntos
Estudos de Viabilidade , Impressão Tridimensional , Técnicas de Sutura , Suturas , Resistência à Tração , Animais , Suínos , Lacerações/cirurgia , Teste de Materiais , Nylons , Cicatrização , Humanos , Modelos Animais de Doenças
9.
Macromol Rapid Commun ; 45(11): e2400036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453138

RESUMO

Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.


Assuntos
Polimerização , Resinas Sintéticas/química , Microesferas , Polímeros/química , Temperatura , Teste de Materiais , Propriedades de Superfície , Tamanho da Partícula
10.
Macromol Rapid Commun ; 45(16): e2400228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837476

RESUMO

To enhance the low-temperature toughness and resistance of the engineering plastic polyamide PA12, this study introduces novel PA12/MVQ@POE-g-MAH ternary composites using a two-step process and dynamic curing. Analytical results indicate that incorporating MVQ@POE-g-MAH into the PA12 matrix markedly enhances its toughness and heat resistance. As the MVQ@POE-g-MAH content increases, the elongation at break of PA12 composites significantly expands from 52.83% to 204.69%, and the notch impact strength escalates from 8.69 to 74.34 kJ m-2. In addition, the brittleness temperature of PA12 decreases from -59.5 to -67.0 °C. Experimental findings confirm that POE-g-MAH is dispersed at the interface between MVQ and PA12, creating an encapsulated structure of MVQ@POE-g-MAH. This enhancement significantly broadens the potential applications of PA12 by improving its toughness, and resistance to both low and high temperatures, as well as impact endurance.


Assuntos
Nylons , Nylons/química , Temperatura , Temperatura Baixa , Teste de Materiais , Estrutura Molecular
11.
Macromol Rapid Commun ; 45(15): e2400098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862122

RESUMO

Cellulose nanopaper is a material structure that possesses high mechanical performance and is widely regarded as a promising 2D reinforcement for polymer matrix composites. This work explores the use of low grammage bacterial cellulose (BC) nanopaper as reinforcement for poly(acrylated urethane) interlayer adhesive to increase the impact performance of multilayer acrylic composites. The BC nanopaper is impregnated with an acrylated urethane resin and laminated between acrylic sheets to create BC/acrylic composites consisting of one, three, and five layers of BC nanopaper-reinforced poly(acrylated urethane) interlayer adhesive(s). Both the poly(acrylated urethane)-filled BC nanopaper interlayer adhesive and the resulting laminated acrylic composites are optically transparent. The incorporation of BC nanopaper into the poly(acrylated urethane) interlayer adhesive improves the tensile modulus by eightfold and the single-edge notched fracture toughness by 60% compared to neat poly(acrylated urethane). It is also found that using poly(acrylated urethane)-filled BC nanopaper interlayer adhesive proves beneficial to the impact properties of the resulting laminated acrylic composites. In Charpy impact testing, the impact strength of the multilayer acrylic composites increases by up to 130% compared to the "gold-standard" impact-modified monolithic acrylic, with a BC loading of only 1.6 wt%.


Assuntos
Celulose , Celulose/química , Poliuretanos/química , Resinas Acrílicas/química , Papel , Resistência à Tração , Teste de Materiais
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 67-77, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650153

RESUMO

Osteoinduction, and/or osteoconduction, and antibacterial characteristics are prerequisites for achieving successful bone grafting. This study aimed to coat bone allografts with silver nanoparticles and assess their antibacterial activity and biocompatibility compared to uncoated bone allografts. In this study, the bone allografts were coated with varying concentrations of silver nanoparticles (5 mg/l, 10 mg/l, and 50 mg/l) through a simple adsorption technique. Subsequently, the coated samples underwent characterization using SEM, FTIR, EDS, and XRD. The Minimal Inhibitory Concentration (MIC) of the silver nanoparticles was determined against Staphylococcus aureus and Streptococcus mutans. Bacterial growth inhibition was evaluated by measuring turbidity and performing a disk diffusion test. Moreover, qualitative investigation of biofilm formation on the coated bone allograft was conducted using SEM. Following this, MG-63 cell lines, resembling osteoblasts, were cultured on the bone allografts coated with 5 mg/l of silver nanoparticles, as well as on uncoated bone allografts, to assess biocompatibility. The MIC results demonstrated that silver nanoparticles exhibited antimicrobial effects on both microorganisms, inhibiting the growth of isolates at concentrations of 0.78 mg/L for Staphylococcus aureus and 0.39 mg/L for Streptococcus mutans. The bone allografts coated with varying concentrations of silver nanoparticles exhibited significant antibacterial activity against the tested bacteria, completely eradicating bacterial growth and preventing biofilm formation. The osteoblast-like MG-63 cells thrived on the bone allografts coated with 5 mg/l of silver nanoparticles, displaying no significant differences compared to both the uncoated bone allografts and the control group.  Within the limit of this study, it can be concluded that silver nanoparticles have a positive role in controlling graft infection. In addition, simple adsorption technique showed an effective method of coating without overwhelming the healing of the graft.


Assuntos
Aloenxertos , Antibacterianos , Biofilmes , Substitutos Ósseos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Staphylococcus aureus , Streptococcus mutans , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Biofilmes/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Aloenxertos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Transplante Ósseo/métodos , Teste de Materiais , Linhagem Celular
13.
Biomed Eng Online ; 23(1): 73, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061069

RESUMO

BACKGROUND: Minimally invasive glaucoma surgery (MIGS) has experienced a surge in popularity in recent years. Glaucoma micro-stents serve as the foundation for these minimally invasive procedures. Nevertheless, the utilization of these stents still presents certain short-term and long-term complications. This study aims to elucidate the creation of a novel drainage stent implant featuring a diverging channel, produced through microfluidic template processing technology. Additionally, an analysis of the mechanical properties, biocompatibility, and feasibility of implantation is conducted. RESULTS: The stress concentration value of the proposed stent is significantly lower, approximately two to three times smaller, compared to the currently available commercial XEN gel stent. This indicates a stronger resistance to bending in theory. Theoretical calculations further reveal that the initial drainage efficiency of the gradient diverging drainage stent is approximately 5.76 times higher than that of XEN stents. Notably, in vivo experiments conducted at the third month demonstrate a favorable biocompatibility profile without any observed cytotoxicity. Additionally, the drainage stent exhibits excellent material stability in an in vitro simulation environment. CONCLUSIONS: In summary, the diverging drainage stent presents a novel approach to the cost-effective and efficient preparation process of minimally invasive glaucoma surgery (MIGS) devices, offering additional filtering treatment options for glaucoma.


Assuntos
Glaucoma , Stents , Glaucoma/cirurgia , Animais , Microfluídica/instrumentação , Teste de Materiais , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Fenômenos Mecânicos , Desenho de Equipamento , Coelhos
14.
Environ Res ; 258: 119248, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823615

RESUMO

To ensure the structural integrity of concrete and prevent unanticipated fracturing, real-time monitoring of early-age concrete's strength development is essential, mainly through advanced techniques such as nano-enhanced sensors. The piezoelectric-based electro-mechanical impedance (EMI) method with nano-enhanced sensors is emerging as a practical solution for such monitoring requirements. This study presents a strength estimation method based on Non-Destructive Testing (NDT) Techniques and Long Short-Term Memory (LSTM) and artificial neural networks (ANNs) as hybrid (NDT-LSTMs-ANN), including several types of concrete strength-related agents. Input data includes water-to-cement rate, temperature, curing time, and maturity based on interior temperature, allowing experimentally monitoring the development of concrete strength from the early steps of hydration and casting to the last stages of hardening 28 days after the casting. The study investigated the impact of various factors on concrete strength development, utilizing a cutting-edge approach that combines traditional models with nano-enhanced piezoelectric sensors and NDT-LSTMs-ANN enhanced with nanotechnology. The results demonstrate that the hybrid provides highly accurate concrete strength estimation for construction safety and efficiency. Adopting the piezoelectric-based EMI technique with these advanced sensors offers a viable and effective monitoring solution, presenting a significant leap forward for the construction industry's structural health monitoring practices.


Assuntos
Materiais de Construção , Impedância Elétrica , Aprendizado de Máquina , Redes Neurais de Computação , Materiais de Construção/análise , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Teste de Materiais/métodos
15.
Int J Med Sci ; 21(9): 1672-1680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006845

RESUMO

Implants have always been within the interest of both clinicians and material scientists due to their places in reconstructive and prosthetics surgery. Excessive bone loss or resorption in some patients makes it difficult to design and manufacture the implants that bear the necessary loads to carry the final prosthetics. With this study; we tried to determine the minimum material thickness of the subperiosteal implants that can withstand the physiological forces. We have created a digital average bone structure based on actual patient data and designed different subperiosteal implants with 1, 1.5, and 2mm material thicknesses (M1, M2, M3) for this digital model. The designed implant models are subjected to 250 Newtons (N) of force, and the implant and bone are tested for the stress they are exposed to, the pressure they transmit to, and their mechanical strength with Finite Element Analysis with the physical parameters boot for the implant material and human bone. Results show us that under specific design parameters and thicknesses, the 1mm thickness design failed due to exceeding the yield stress limit of 415MPa with a 495,44MPa value. The thinnest implant showed plastic deformation and transmitted excessive forces, which may cause bone resorption due to residual stress. We determined that thinner subperiosteal implants down to 1.5mm that have the necessary material parameters for function and tissue support can be designed and manufactured with current technologies.


Assuntos
Análise de Elementos Finitos , Estresse Mecânico , Humanos , Próteses e Implantes , Fenômenos Biomecânicos , Osso e Ossos/cirurgia , Osso e Ossos/fisiologia , Teste de Materiais
16.
Int Urogynecol J ; 35(4): 741-758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358519

RESUMO

INTRODUCTION AND HYPOTHESIS: Polypropylene (PP) mesh for the treatment of pelvic organ prolapse (POP) has raised substantial concerns over long-term complications, leading to its ban in multiple countries. In response, emerging materials are being explored as alternatives for prolapse surgery. Preclinical animal models have historically played a pivotal role in validating medical devices, prior to clinical trials. Successful translation of these materials necessitates the identification of suitable animal models that replicate the female human pelvis and its biomechanical properties. Preclinical in vivo testing assesses the safety of surgical mesh and treatment efficacy in preventing POP recurrence. METHODS: The research critically reviews animal models used for preclinical pelvic mesh testing over the last decade and proposes a promising model for future preclinical studies. RESULTS: Rats were the most common mammal used for toxicity and biocompatibility investigations through abdominal implantation. Although non-human primates serve as a gold standard for efficacy testing, ethical considerations limit their use owing to their close biological and cognitive resemblance to humans. Consequently, sheep were the most preferred large animal model owing to their reproductive system similarities and propensity for spontaneous POP following parity. CONCLUSION: The study contributes valuable insights into the selection of appropriate animal models for preclinical pelvic mesh testing, offering guidance that is crucial for enhancing the safety and efficacy of novel surgical interventions in the treatment of POP.


Assuntos
Modelos Animais de Doenças , Prolapso de Órgão Pélvico , Telas Cirúrgicas , Animais , Prolapso de Órgão Pélvico/cirurgia , Feminino , Ratos , Humanos , Ovinos , Teste de Materiais , Modelos Animais
17.
Clin Oral Implants Res ; 35(3): 340-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225734

RESUMO

BACKGROUND AND OBJECTIVES: The aim of implantoplasty (IP) is to remove titanium implant layers that have been contaminated and to smoothen the implant surfaces so they retain less plaque. However, existing IP methods are very invasive and reduce implant wall thickness. AIM: To investigate the suitability of novel sonic tips in IP and to compare this novel protocol with conventional abrasive procedures. MATERIALS AND METHODS: Thirty dental implants (Ø 4.1 mm, 10 mm length) were distributed in three groups and investigated according to the protocol of Sivolella et al., with modifications to the instrument's feed rate, the applied contact force, and the speed of implant rotations per minute. The upper third of the implant was processed with a diamond-coated bur (BUR) or novel non-diamond-coated sonic tips (AIRSCALER). After standardized IP, the surfaces were analyzed by tactile profilometry and scanning electron microscopy (SEM). Changes in implant weight, implant material loss, and implant fracture strength were assessed. RESULTS: The mean roughness (Ra , Sa ), implant material loss, and change in implant weight were significantly lower in the AIRSCALER group than in the BUR group, whereas the mean compression resistance values were significantly higher in the AIRSCALER group than in the BUR group. CONCLUSIONS: IP with uncoated sonic tips smoothes the surfaces and reduces structural loss of the implant in the area of microthreads. This new IP method could be of great clinical importance, especially for implants with microthreads and reduced diameter or wall thickness.


Assuntos
Implantes Dentários , Projetos Piloto , Teste de Materiais , Polimento Dentário , Propriedades de Superfície , Titânio/química , Microscopia Eletrônica de Varredura
18.
Clin Oral Implants Res ; 35(4): 377-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170349

RESUMO

OBJECTIVES: The aim of this study was to evaluate the effect of sterilization on the retention forces of lithium disilicate (LD) and polymer-infiltrated ceramic network (PICN) crowns bonded to titanium base (Ti-base) abutments. MATERIALS AND METHODS: Forty LD and 40 PICN crowns were milled and then bonded to 80 Ti-bases with two resin composite cements: Multilink Hybrid Abutment (mh) and Panavia V5 (pv) for a total of 8 groups (n = 10). Half of the specimens (test) underwent an autoclaving protocol (pressure 1.1 bar, 121°C, 20.5 min) and the other half not (control). Restorations were screw-retained to implants, and retention forces (N) were measured with a pull-off testing machine. The surfaces of the Ti-bases and the crowns were inspected for the analysis of the integrity of the marginal bonding interface and failure mode. Student's t-test, chi-square test, and univariate linear regression model were performed to analyze the data (α = 0.05). RESULTS: The mean pull-off retention forces ranged from 487.7 ± 73.4 N to 742.2 ± 150.3 N. Sterilized groups showed statistically significant overall higher maximum retention forces (p < .05), except for one combination (LD + mh). Sterilization led to an increased presence of marginal gaps and deformities compared to no-sterilization (p < .001), while no statistically significant relationship was found between failure mode and sterilization (p > .05). CONCLUSIONS: Sterilization may have a beneficial effect on the retention forces of LD and PICN crowns bonded to titanium base abutments, although it may negatively influence the integrity of the marginal bonding interface.


Assuntos
Polímeros , Titânio , Porcelana Dentária , Coroas , Teste de Materiais , Zircônio , Cerâmica , Análise do Estresse Dentário , Dente Suporte , Desenho Assistido por Computador
19.
Clin Oral Implants Res ; 35(4): 419-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329172

RESUMO

OBJECTIVES: To simulate the replacement of a premolar with an implant-supported cantilever fixed dental prosthesis (ICFDP) and how the fracture load is affected by implant type, positioning within the zirconia blank, and aging protocol. MATERIALS AND METHODS: Seventy-two ICFDPs were designed either within the enamel- or dentin layer of a 4Y-PSZ blank for bone-level and tissue-level titanium-zirconium implants. Fracture load was obtained on the cantilever at baseline (no aging) or after aging in a chewing simulator with the load applied within the implant axis (axial aging) or on the cantilever (12 groups with n = 6). A three-way ANOVA was applied (α = .05). RESULTS: A three-way ANOVA revealed a significant effect on fracture load values of implant type (p = .006) and aging (p < .001) but not for the position within the zirconia blank (p = .847). Fracture load values significantly increased from baseline bone level (608 ± 118 N) and tissue level (880 ± 293 N) when the implants were aged axially, with higher values for tissue level (1065 ± 182 N) than bone level (797 ± 113 N) (p < .001). However, when the force was applied to the cantilever, fracture load values decreased significantly for tissue-level (493 ± 70 N), while values for bone-level implants remained stable (690 ± 135 N). CONCLUSIONS: For ICFDPs, the use of bone-level implants is reasonable as catastrophic failures are likely to be restricted to the restoration, whereas with tissue-level implants, the transmucosal portion of the implant is susceptible to deformation, making repair more difficult.


Assuntos
Implantes Dentários , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Zircônio , Falha de Restauração Dentária , Teste de Materiais
20.
Clin Oral Implants Res ; 35(8): 1042-1053, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38415804

RESUMO

PURPOSE: Investigate survival and technical complications of two-unit posterior implant-supported cantilever made of monolithic zirconia on titanium-base abutments (Zr-TiB) vs. porcelain-fused-to-metal on castable gold abutments (PFM-GA) using two different implant connections, internal butt-joint (IBJ) and internal conical (IC). MATERIALS AND METHODS: Forty-eight implants (4.3 mm diameter) were divided into four groups (n = 12) to support 2-unit mandibular premolar cantilevers with two different materials (Zr-TiB vs. PFM-GA) and two connection types (IBJ vs. IC). Tested groups were as follows: (1) IBJ/Zr-TiB; (2) IBJ/PFM-GA; (3) IC/Zr-TiB; and (4) IC/PFM-GA. Specimens were thermomechanical aged (1,200,000 cycles, 98 N, 5-55°C) with occlusal axial load on the pontic. Catastrophic and non-catastrophic events were registered, and removal torque values measured before and after aging. Specimens surviving aging were subjected to loading until failure. Survival, total complication rates, torque loss (%), and bending moments were calculated. RESULTS: From 48 specimens, 38 survived aging. Survival rates significantly varied from 16.7% (IC/PFM-GA) to 100% (IBJ/Zr-TiB; IBJ/PFM-GA; IC/Zr-TiB) (p < .01). Internal conical connection revealed significantly higher torque loss (IC/ZrTiB - 67%) compared to internal butt-joint (IBJ/Zr-TiB - 44%; IBJ/PFM-GA - 46%) (p < .01). Bending moments were higher in internal butt-joint connections than in internal conical (p < .05). CONCLUSION AND CLINICAL IMPLICATIONS: Two-unit posterior implant-supported cantilever FDPs replacing mandibular premolars composed of monolithic zirconia on titanium-base abutments demonstrated higher mechanical stability compared to porcelain-fused-to-metal on castable gold abutments in this in vitro study. The internal conical connection combined with porcelain-fused-to-metal on gold abutments revealed a high number of failures; therefore, their clinical use may be considered cautiously for this indication.


Assuntos
Dente Suporte , Projeto do Implante Dentário-Pivô , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Titânio , Zircônio , Zircônio/química , Titânio/química , Humanos , Técnicas In Vitro , Falha de Restauração Dentária , Torque , Teste de Materiais , Dente Pré-Molar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA