RESUMO
CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Ácidos e Sais Biliares/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Adulto , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Transporte Biológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Homeostase/imunologia , Humanos , Ileíte/genética , Ileíte/patologia , Íleo/imunologia , Íleo/patologia , Imunidade nas Mucosas , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Transdução de Sinais , Tetra-Hidroisoquinolinas/farmacologiaRESUMO
Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
Assuntos
Inteligência Artificial , Produtos Biológicos/síntese química , Técnicas de Química Sintética/métodos , Química Orgânica/métodos , Software , Inteligência Artificial/normas , Automação/métodos , Automação/normas , Benzilisoquinolinas/síntese química , Benzilisoquinolinas/química , Técnicas de Química Sintética/normas , Química Orgânica/normas , Indanos/síntese química , Indanos/química , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Bases de Conhecimento , Lactonas/síntese química , Lactonas/química , Macrolídeos/síntese química , Macrolídeos/química , Reprodutibilidade dos Testes , Sesquiterpenos/síntese química , Sesquiterpenos/química , Software/normas , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/químicaRESUMO
ConspectusThe bis-tetrahydroisoquinoline (bis-THIQ) natural products represent a medicinally important class of isoquinoline alkaloids that exhibit broad biological activities with particularly potent antitumor properties, as exemplified by the two U.S. FDA approved molecules trabectidin and lurbinectedin. Accordingly, other members within the bis-THIQ family have emerged as prime targets for synthetic chemists, aiming to innovate an orthogonal chemical production of these compounds. With the ability of these complementary strategies to reliably and predictably manipulate molecular structures with atomic precision, this should allow the preparation of synthetic derivatives not existing in nature as new drug leads in the development of novel medicines with desired biological functions.Beyond the biological perspective, bis-THIQ natural products also possess intricate and unique structures, serving as a source of intellectual stimulation for synthetic organic chemists. Within our laboratory, we have developed an integrated program that combines reaction development and target-directed synthesis, leveraging the architecturally complex molecular framework of bis-THIQ natural products as a driving force for the advancement of novel reaction methodologies. In this Account, we unveil our synthetic efforts in a comprehensive story, describing how our synthetic strategy toward bis-THIQ natural products, specifically jorunnamycin A and jorumycin, has evolved over the course of our studies through our key transformations comprising (a) the direct functionalization of isoquinoline N-oxide to prepare the bis-isoquinoline (bis-IQ) intermediate, (b) the diastereoselective and enantioselective isoquinoline hydrogenation to forge the pentacyclic skeleton of the natural product, and (c) the late-stage oxygenation chemistry to adjust the oxidation states of the A- and E-rings. First, we detail our plan in utilizing the aryne annulation strategy to prepare isoquinoline fragments for the bis-THIQ molecules. Faced with unpromising results in the direct C-H functionalization of isoquinoline N-oxide, we lay out in this Account our rationale behind the design of each isoquinoline coupling partner to overcome these challenges. Additionally, we reveal the inspiration for our hydrogenation system, the setup of our pseudo-high-throughput screening, and the extension of the developed hydrogenation protocols to other simplified isoquinolines.In the context of non-natural bis-THIQ molecules, we have successfully adapted this tandem coupling/hydrogenation approach in the preparation of perfluorinated bis-THIQs, representing the first set of electron-deficient non-natural analogues. Finally, we include our unsuccessful late-stage oxygenation attempts prior to the discovery of the Pd-catalyzed C-O cross-coupling reaction. With this full disclosure of the chemistry developed for the syntheses of bis-THIQs, we hope our orthogonal synthetic tactics will provide useful information and serve as an inspiration for the future development of bis-THIQ pharmaceuticals.
Assuntos
Tetra-Hidroisoquinolinas , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/síntese química , Alcaloides/química , Alcaloides/síntese química , Produtos Biológicos/química , Produtos Biológicos/síntese químicaRESUMO
The tetrahydroisoquinoline (THIQ) natural products constitute one of the largest families of alkaloids and exhibit a wide range of structural diversity and biological activity. Ranging from simple THIQ natural products to complex trisTHIQ alkaloids such as the ecteinascidins, the chemical syntheses of these alkaloids and their analogs have been thoroughly investigated due to their intricate structural features and functionalities, as well as their high therapeutic potential. This review describes the general structure and biosynthesis of each family of THIQ alkaloids as well as recent advancements of the total synthesis of these natural products from 2002 to 2020. Recent chemical syntheses that have emerged harnessing novel, creative synthetic design, and modern chemical methodology will be highlighted. This review will hopefully serve as a guide for the unique strategies and tools used in the total synthesis of THIQ alkaloids, as well as address the longstanding challenges in their chemical and biosynthesis.
Assuntos
Alcaloides , Produtos Biológicos , Tetra-Hidroisoquinolinas , Alcaloides/química , Tetra-Hidroisoquinolinas/química , Produtos Biológicos/químicaRESUMO
P-glycoprotein (P-gp) is an ATP-binding cassette transporter known for its roles in expelling xenobiotic compounds from cells and contributing to cellular drug resistance through multidrug efflux. This mechanism is particularly problematic in cancer cells, where it diminishes the therapeutic efficacy of anticancer drugs. P-gp inhibitors, such as elacridar, have been developed to circumvent the decrease in drug efficacy due to P-gp efflux. An earlier study reported the cryo-EM structure of human P-gp-Fab (MRK-16) complex bound by two elacridar molecules, at a resolution of 3.6 Å. In this study, we have obtained a higher resolution (2.5 Å) structure of the P-gp- Fab (UIC2) complex bound by three elacridar molecules. This finding, which exposes a larger space for compound-binding sites than previously acknowledged, has significant implications for the development of more selective inhibitors and enhances our understanding of the compound recognition mechanism of P-gp.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Acridinas , Tetra-Hidroisoquinolinas , Humanos , Acridinas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Microscopia CrioeletrônicaRESUMO
INTRODUCTION: Recent studies scrutinize how NETosis (a unique cell death mechanism of neutrophil), impacts thrombosis patients with essential thrombocythemia (ET). This research evaluates the susceptibility of ET neutrophils to form NETs and tests two potential inhibitors, resveratrol (RSV) and tetrahydroisoquinoline (THIQ), in vitro. METHODS: Platelet-rich plasma from low-risk ET patients was used, along with neutrophils from both patients and controls. NET formation assays, with or without RSV and THIQ treatment after LPS stimulation, were conducted in a CO2 incubator. Evaluation included flow cytometry and fluorescence microscopy for NET formation and ELISA for TNFα, IL8, and vWF:Ag levels in patient and control plasma. RESULTS: Neutrophils from ET patients released more NETs than controls, confirmed by flow cytometry and fluorescence microscopy. Additionally, patients had significantly higher plasma levels of IL8 and TNFα compared to controls, while RSV was more effective than THIQ in reducing NETosis rates in these patients. CONCLUSIONS: In ET patients, a platelet counts over 1 million indicates the need for preventive treatment against thrombotic events. Similarly, in this study, RSV and THIQ significantly reduced the rate of NETosis in ET patients with higher platelet counts, and this role was more prominent in the case of the second inhibitor (RSV).
Assuntos
Armadilhas Extracelulares , Neutrófilos , Resveratrol , Tetra-Hidroisoquinolinas , Trombocitemia Essencial , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/sangue , Trombocitemia Essencial/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/uso terapêutico , Adulto , Idoso , Estudos de Casos e Controles , Citocinas/metabolismo , Suscetibilidade a DoençasRESUMO
Cancer, as a public health issue, is the leading cause of death worldwide. Tetrahydroisoquinoline derivatives have effective biological activities and can be used as potential therapeutic agents for antitumor drugs. In this work, we designed and synthesized a series of novel tetrahydroisoquinoline compounds and evaluated their antitumor activity in vitro on several representative human cancer cell lines. The results showed that the vast majority of compounds showed good inhibitory activities against the cancer cell lines of HCT116, MDA-MB-231, HepG2, and A375.
Assuntos
Antineoplásicos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Tetra-Hidroisoquinolinas , Humanos , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a DrogaRESUMO
OPINION STATEMENT: Soft tissue sarcoma (STS), a substantial group of aggressive and rare tumors with tissue heterogeneity, is infrequently represented in clinical trials with an urgent necessity for newer treatment options. Lurbinectedin, an analog of trabectedin, is currently approved, in various countries, as a single agent, for the treatment of patients with relapsed small cell lung cancer (SCLC). However, preclinical and phase I and phase II trials have demonstrated the efficacy of lurbinectedin in different tumor types, including STS. The better understanding of the pathophysiology and evolution of STS as well as the mechanism of action of lurbinectedin in addition to the available data regarding the activity of this drug in this subset of patients will pave the way to newer therapeutic options and strategies.
Assuntos
Carbolinas , Compostos Heterocíclicos de 4 ou mais Anéis , Sarcoma , Neoplasias de Tecidos Moles , Tetra-Hidroisoquinolinas , Humanos , Tetra-Hidroisoquinolinas/uso terapêutico , Tetra-Hidroisoquinolinas/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Dioxóis/uso terapêutico , Dioxóis/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Neoplasias de Tecidos Moles/tratamento farmacológicoRESUMO
A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.
Assuntos
Doença de Alzheimer , Tetra-Hidroisoquinolinas , Humanos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Cinética , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Tetra-Hidroisoquinolinas/farmacologia , Doença de Alzheimer/tratamento farmacológicoRESUMO
Aiming to discover effective and safe non-steroidal anti-inflammatory agents, a new set of 1,2,4-triazole tetrahydroisoquinoline hybrids 9a-g, 11a-g and 12a-g was synthesized and evaluated as inhibitors of COX-1 and COX-2. In order to overcome the adverse effects of highly selective COX-2 and non-selective COX-2 inhibitors, the compounds of this study were designed with the goal of obtaining moderately selective COX-2 inhibitors. In this study compounds 9e, 9g and 11f are the most effective derivatives against COX-2 with IC50 values 0.87, 1.27 and 0.58 µM, respectively which are better than or comparable to the standard drug celecoxib (IC50 = 0.82 µM) but with lower selectivity indices as required by our goal design. The results of the in vivo anti-inflammatory inhibition test revealed that compounds 9e, 9g and 11f displayed a higher significant anti-inflammatory activity than celecoxib at all-time intervals. In addition, these compounds significantly decreased the production of inflammatory mediators PGE-2, TNF-É and IL-6. Compounds 9e, 9g and 11f had a safe gastric profile compared to indomethacin, also compound 11f (ulcerogenic index = 1.33) was less ulcerous than the safe celecoxib (ulcerogenic index = 3). Moreover, histopathological investigations revealed a normal architecture of both paw skin and gastric mucosa after oral treatment of rats with compound 11f. Furthermore, molecular docking studies were performed on COX-1 and COX-2 to study the binding pattern of compounds 9e, 9g and 11f on both isoenzymes.
Assuntos
Anti-Inflamatórios não Esteroides , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Desenho de Fármacos , Edema , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Animais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Relação Estrutura-Atividade , Ratos , Edema/tratamento farmacológico , Edema/induzido quimicamente , Estrutura Molecular , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Simulação de Acoplamento Molecular , Masculino , Carragenina , Ratos Wistar , Humanos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológicoRESUMO
Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.
Assuntos
Benzilisoquinolinas/metabolismo , Isoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biossíntese , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fermentação , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismoRESUMO
Neuroblastoma and glioblastoma are primary malignant tumors of the nervous system, with frequent relapse and limited clinical therapeutic drugs. The failure of their treatment is due to the tumor cells exhibiting cancer stem-like cells (CSLCs) properties. Octamer binding transcription factor 4 (Oct4) is involved in mediating CSLCs, our previous work found that Oct4-driven reprogramming of astrocytes into induced neural stem cells was potentiated with continuous sonic hedgehog (Shh) stimulation. In this study, we aimed to study the importance of Oct4 and Shh combination in the stemness properties induction of neuroblastoma and glioblastoma cells, and evaluate the anti-stemness effect of dauricine (DAU), a natural product of bis-benzylisoquinoline alkaloid. The effect of Oct4 and Shh co-activation on cancer stemness was evaluated by tumor spheres formation model and flow cytometry analysis. Then the effects of DAU on SH-SY5Y and T98-G cells were assessed by the MTT, colony formation, and tumor spheres formation model. DAU acts on Oct4 were verified using the Western blotting, MTT, and so on. Mechanistic studies were explored by siRNA transfection assay, Western blotting, and flow cytometry analysis. We identified that Shh effectively improved Oct4-mediated generation of stemness in SH-SY5Y and T98-G cells, and Oct4 and Shh co-activation promoted cell growth, the resistance of apoptosis. In addition, DAU, a natural product, was found to be able to attenuate Oct4/Shh co-activated stemness and induce cell cycle arrest and apoptosis via blocking AKT/ß-catenin signaling in neuroblastoma and glioblastoma, which contributed to the neuroblastoma and glioblastoma cells growth inhibition by DAU. In summary, our results indicated that the treatment of DAU may be served as a potential therapeutic method in neuroblastoma and glioblastoma.
Assuntos
Benzilisoquinolinas , Produtos Biológicos , Glioblastoma , Neuroblastoma , Tetra-Hidroisoquinolinas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Benzilisoquinolinas/farmacologia , Células-Tronco Neoplásicas , Proliferação de Células , Apoptose , Produtos Biológicos/farmacologiaRESUMO
A cochleate formulation was developed to enhance the oral bioavailability of revaprazan (RVP). Dimyristoyl phosphatidylcholine (DMPC) liposome containing dicetyl phosphate (DCP) successfully formed a cochleate after treatment with CaCl2, whereas that containing sodium deoxycholate did not. Cochleate was optimised using a D-optimal mixture design with three independent variables-DMPC (X1, 70.58 mol%), cholesterol (X2, 22.54 mol%), and DCP (X3, 6.88 mol%)-and three response variables: encapsulation efficiency (Y1, 76.92%), released amount of free fatty acid at 2 h (Y2, 39.82%), and released amount of RVP at 6 h (Y3, 73.72%). The desirability function was 0.616, showing an excellent agreement between the predicted and experimental values. The cylindrical morphology of the optimised cochleate was visualised, and laurdan spectroscopy confirmed the dehydrated membrane interface, showing an increased generalised polarisation value (approximately 0.5) over small unilamellar vesicle of RVP (RVP-SUV; approximately 0.1). The optimised cochleate showed greater resistance to pancreatic enzyme than RVP-SUV. RVP was released in a controlled manner, achieving approximately 94% release in 12 h. Following oral administration in rats, the optimised cochleate improved the relative bioavailability of RVP by approximately 274%, 255%, and 172% compared to RVP suspension, a physical mixture of RVP and the cochleate, and RVP-SUV, respectively. Thus, the optimised cochleate formulation might be a good candidate for the practical development of RVP.
Assuntos
Dimiristoilfosfatidilcolina , Lipossomos , Pirimidinonas , Tetra-Hidroisoquinolinas , Ratos , Animais , Disponibilidade Biológica , Administração Oral , Tamanho da PartículaRESUMO
We have synthesized 22 C-1 functionalized-N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives showing biological activities towards cholinergic enzymes. Synthesis was performed using visible-light-promoted photo-redox chemistry, starting from a common intermediate, and the application of this synthetic methodology drastically simplified synthetic routes and purification of desired compounds. All synthesized derivates were divided into four groups based on the substituents in the C-1 position, and their inhibition potencies towards two cholinergic enzymes, acetyl- and butyrylcholinesterase were evaluated. Most potent derivatives were selected, and kinetic analysis was further carried out to obtain insights into the mechanisms of inhibition of these two enzymes. Further validation of the mode of inhibition of cholinergic enzymes by the two most potent THIQ compounds, 3c and 3i, was performed using fluorescence-quenching titration studies. Molecular docking studies further confirmed the proposed mechanism of enzymes' inhibition. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the selected most potent derivatives were performed using Swiss ADME tool. This was followed by UPLC-assisted log P determination and in vitro BBB permeability studies performed in order to assess the potential of the synthesized compounds to pass the BBB.
Assuntos
Doença de Alzheimer , Tetra-Hidroisoquinolinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Cinética , Simulação de Acoplamento Molecular , Inibidores Enzimáticos , Tetra-Hidroisoquinolinas/farmacologiaRESUMO
The in-silico strategy of identifying novel uses for already existing drugs, known as drug repositioning, has enhanced drug discovery. Previous studies have shown a positive correlation between expression changes induced by the anticancer agent trabectedin and those caused by irinotecan, a topoisomerase I inhibitor. Leveraging the availability of transcriptional datasets, we developed a general in-silico drug-repositioning approach that we applied to investigate novel trabectedin synergisms. We set a workflow allowing the identification of genes selectively modulated by a drug and possible novel drug interactions. To show its effectiveness, we selected trabectedin as a case-study drug. We retrieved eight transcriptional cancer datasets including controls and samples treated with trabectedin or its analog lurbinectedin. We compared gene signature associated with each dataset to the 476,251 signatures from the Connectivity Map database. The most significant connections referred to mitomycin-c, topoisomerase II inhibitors, a PKC inhibitor, a Chk1 inhibitor, an antifungal agent, and an antagonist of the glutamate receptor. Genes coherently modulated by the drugs were involved in cell cycle, PPARalpha, and Rho GTPases pathways. Our in-silico approach for drug synergism identification showed that trabectedin modulates specific pathways that are shared with other drugs, suggesting possible synergisms.
Assuntos
Antineoplásicos , Tetra-Hidroisoquinolinas , Trabectedina/farmacologia , Trabectedina/uso terapêutico , Tetra-Hidroisoquinolinas/farmacologia , Dioxóis/farmacologia , Sinergismo FarmacológicoRESUMO
Cardiovascular disease is the first cause of death worldwide and kills more people each year than any other cause of death. N, N-dimethylaniline-heliamine (DH), a synthetic tetrahydroisoquinoline alkaloid, has shown notable antiarrhythmic activity. However, the metabolic processes and pharmacokinetic characteristics of DH in rats have not been studied. This study aims to identify its metabolites, as well as develop and validate a rapid and efficient bioanalytical method for quantifying DH in rat plasma over a wide range of concentrations. Its metabolites were characterized in silico, in vitro, and in vivo. A series of 16 metabolites were identified, of which 12 were phase I metabolites and 4 were phase II metabolites. A low probability of DH binding to DNA, protein, and glutathione is predicted by the in silico model. The main metabolic processes of DH were demethylation, dehydrogenation, glucuronidation, and sulfation. Concentration-time profiles were generated by analyzing the plasma, and the outcomes were analyzed via non-compartmental analysis to identify the pharmacokinetic parameters. Among the detected parameters were the volume of distribution, estimated at 126,728.09 ± 56,867.09 mL/kg, clearance at 30,148.65 ± 15,354.27 mL/h/kg, and absolute oral bioavailability at 16.11%. The plasma distribution volume of DH was substantially higher than the overall plasma volume of rats, which suggests that DH has a specific tissue distribution in rats. This study suggests that DH is appropriately bioavailable and excreted via a variety of routes and has low toxicity.
Assuntos
Espectrometria de Massas em Tandem , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Masculino , Tetra-Hidroisoquinolinas/farmacocinética , Tetra-Hidroisoquinolinas/sangue , Ratos Sprague-Dawley , Compostos de Anilina/farmacocinéticaRESUMO
Trabectedin is a marine-derived anticancer drug approved for the treatment of patients with advanced soft-tissue sarcomas (STS). Here, we aimed to analyze its use in a large cohort of STS patients treated in Italy in a real-world setting. Data on STS patients treated with trabectedin in Italy were prospectively collected from January 2013 to December 2019 by the national drug regulator, the Italian Medicines Agency (AIFA). Time-to-off-treatment (TToT) was defined as the time between the initial prescription of trabectedin and the date of treatment discontinuation for any cause. The impact of the different baseline covariates, including the initial prescribed dose of trabectedin, on TToT was evaluated using an accelerated failure time (AFT) models with log-logistic distribution. In total, we analyzed data from 2633 sarcoma patients and 14 950 individual cycles of trabectedin. The median number of cycles of trabectedin received per patient was 3 (interquartile range 2-7). The labeled 1.5 mg/sqm dose was used in 27.3% of all first prescriptions. Overall, the median TToT was 93 days. In the final AFT model, the variables significantly associated to longer TToT were female gender (+13% increase in TToT); ECOG performance status 0 (+50%); histological diagnosis of leiomyosarcoma (+22%), well-differentiated/dedifferentiated liposarcoma (+72%) or myxoid liposarcoma (+61%); receiving treatment in a high-volume center (+23%). In this large real-world cohort of STS patients treated with trabectedin, our findings support the use of trabectedin in STS patients, in particular in leiomyosarcoma and liposarcoma patients, and highlight the role of treatment center volume in their management.
Assuntos
Leiomiossarcoma , Lipossarcoma Mixoide , Sarcoma , Neoplasias de Tecidos Moles , Tetra-Hidroisoquinolinas , Humanos , Adulto , Feminino , Masculino , Trabectedina/efeitos adversos , Leiomiossarcoma/patologia , Antineoplásicos Alquilantes/uso terapêutico , Dioxóis/uso terapêutico , Tetra-Hidroisoquinolinas/uso terapêutico , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Lipossarcoma Mixoide/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Sistema de RegistrosRESUMO
Biocatalytic processes are highly selective and specific. However, their utility is limited by the comparatively narrow scope of enzyme-catalysed transformations. To expand product scope, we are developing biocompatible processes that combine biocatalytic reactions with chemo-catalysis in single-flask processes. Here, we show that a chemocatalysed Pictet-Spengler annulation can be interfaced with biocatalysed alcohol oxidation. This two-step, one-pot cascade reaction converts tyramine and aliphatic alcohols to tetrahydroisoquinoline alkaloids in aqueous buffer at mild pH. Tryptamine derivatives are also efficiently converted to tryptolines. Optimization of stoichiometry, pH, reaction time, and whole-cell catalyst deliver the tetrahydroisouinolines and tryptolines in >90 % and >40 % isolated yield, respectively, with excellent regioselectivity.
Assuntos
Alcaloides , Tetra-Hidroisoquinolinas , Biocatálise , Carbolinas , EstereoisomerismoRESUMO
According to some clinical observations, the use of angiotensin-converting enzyme inhibitors (ACEI) may be associated with an increased risk of cancer. The aim of the present study was to screen for the potential carcinogenicity, mutagenicity and genotoxicity of these drugs using in silico methodology. Delapril, enalapril, imidapril, lisinopril, moexipril, perindopril, ramipril, trandolapril, spirapril were thereby analyzed. In parallel, the corresponding degradation impurities, the diketopiperazine (DKP) derivatives, were also investigated. (Q)SAR computer software (VEGA-GUI and Lazar), available in the public domain, was employed. The obtained predictions suggested that none of the compounds tested (from the group of ACE-Is and DKPs) was mutagenic. Moreover, none of the ACE-Is was carcinogenic. The reliability of these predictions was high to moderate. In contrast, in the DKP group, ramipril-DKP and trandolapril-DKP were found to be potentially carcinogenic, but the reliability of this prediction was low. As for the genotoxicity screening, all compounds tested (ACE-I and DKP) were predicted to be active and genotoxic, with moexipril, ramipril, spirapril, and all DKP derivatives within the highest risk group. They were prioritized for experimental verification studies to confirm or exclude their toxic activity. On the other hand, the lowest risk of carcinogenicity was assigned to imidapril and its DKP. Then, a follow-up in vitro micronucleus assay for ramipril was performed. It showed that this drug was genotoxic via aneugenic activity, but only at concentrations exceeding real-life levels. At concentrations found in human blood after standard dose, ramipril was not genotoxic in vitro. Therefore, ramipril was considered safe for human use with a standard dosing regimen. The other compounds of concern (spirapril, moexipril and all DKP derivatives) should be subjected to analogous in vitro studies. We also concluded that the adopted in silico software was applicable for ACE-I toxicity prediction.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Tetra-Hidroisoquinolinas , Humanos , Inibidores da Enzima Conversora de Angiotensina/toxicidade , Carcinógenos/toxicidade , Reprodutibilidade dos Testes , Ramipril/toxicidadeRESUMO
7-substituted tetrahydroisoquinolines derivatives were designed, synthesized, and evaluated for neuroprotective properties. We summarized the preliminary structure activity relationships (SAR). Compound 3i was screened as a hit compound and its antidepressant activity was evaluated by employing the forced swimming test, tail suspension test. Additionally, ADMET profile (absorption, distribution, metabolism, excretion and toxicity properties) of the compound 3i was predicted in order to evaluate their lead-like properties and safety. The interaction of compound 3i bound to MAO-A was explored using molecular docking and molecular dynamics simulation. Results of biological studies revealed that the compound 3i exhibited almost equal antidepressant activity compared with magnoflorine. Compound 3i is predicted to possess good drug like properties and safety based on ADMET profile predictions. This work provides ideas for the drugs discovery of antidepressant agents.