Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Nature ; 609(7926): 361-368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790189

RESUMO

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Metabolismo Energético , Inosina , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(36): e2321874121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39207736

RESUMO

Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid ß-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.


Assuntos
Metabolismo Energético , Transportador Equilibrativo 1 de Nucleosídeo , Adenosina/metabolismo , Adenosina/farmacologia , Caprilatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dictyostelium/metabolismo , Dictyostelium/genética , Dictyostelium/efeitos dos fármacos , Dieta Cetogênica , Gorduras na Dieta/farmacologia , Gorduras na Dieta/metabolismo , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
4.
Drug Metab Dispos ; 52(10): 1094-1103, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39054074

RESUMO

Equilibrative nucleoside transporters (ENTs) mediate the transmembrane flux of endogenous nucleosides and nucleoside analogs used clinically. The predominant subtype, ENT1, has been well characterized. However, the other subtype, ENT2, has been less well characterized in its native milieu due to its relatively low expression and the confounding influence of coexpressed ENT1. We created a cell model where ENT1 was removed from human embryonic kidney (HEK293) cells using CRISPR/cas9 [ENT1 knockout (KO) cells]; this cell line has ENT2 as the only functional purine transporter. Transporter function was assessed through measurement of [3H]2-chloroadenosine uptake. ENT1 protein was quantified based on the binding of [3H]nitrobenzylthioinosine, and ENT1/ENT2 protein was detected by immunoblotting. Changes in expression of relevant transporters and enzymes involved in purine metabolism were examined by quantitative polymerase chain reaction. Wild-type HEK293 cells and ENT1KO cells had a similar expression of SLC29A2/ENT2 transcript/protein and ENT2-mediated [3H]2-chloroadenosine transport activity (Vmax values of 1.02 ± 0.06 and 1.50 ± 0.22 pmol/µl/s, respectively). Of the endogenous nucleosides/nucleobases tested, adenosine had the highest affinity (Ki) for ENT2 (2.6 µM), while hypoxanthine was the only nucleobase with a submillimolar affinity (320 µM). A range of nucleoside/nucleobase analogs were also tested for their affinity for ENT2 in this model, with affinities (Ki) ranging from 8.6 µM for ticagrelor to 2,300 µM for 6-mercaptopurine. Our data suggest that the removal of endogenous ENT1 from these cells does not change the expression or function of ENT2. This cell line should prove useful for the analysis of novel drugs acting via ENT2 and to study ENT2 regulation. SIGNIFICANCE STATEMENT: We have created a cell line whereby endogenous ENT2 can be studied in detail in the absence of the confounding influence of ENT1. Loss of ENT1 has no impact on the expression and function of ENT2. This novel cell line will provide an ideal model for studying drug interactions with ENT2 as well as the cellular regulation of ENT2 expression and function.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Humanos , Células HEK293 , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/genética , Sistemas CRISPR-Cas , 2-Cloroadenosina/farmacologia , 2-Cloroadenosina/análogos & derivados , 2-Cloroadenosina/metabolismo , Técnicas de Inativação de Genes/métodos , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Tioinosina/metabolismo , Transporte Biológico/fisiologia
5.
Purinergic Signal ; 20(2): 193-205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37423967

RESUMO

Evaluation of kinetic parameters of drug-target binding, kon, koff, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1). The compounds were evaluated in radioligand binding experiments, i.e., displacement, competition association, and washout assays, to evaluate their affinity and binding kinetic parameters. We also linked these pharmacological parameters to the compounds' chemical characteristics, and learned that separate moieties of the molecules governed target affinity and binding kinetics. Among the 29 compounds tested, 28 stood out with high affinity and a long residence time of 87 min. These findings reveal the importance of supplementing affinity data with binding kinetics at transport proteins such as hENT1.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Tioinosina , Humanos , Transporte Biológico , Tioinosina/metabolismo , Tioinosina/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/química , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941676

RESUMO

Chronic inflammatory diseases like rheumatoid arthritis are characterized by a deficit in fully functional regulatory T cells. DNA-methylation inhibitors have previously been shown to promote regulatory T cell responses and, in the present study, we evaluated their potential to ameliorate chronic and acute animal models of rheumatoid arthritis. Of the drugs tested, decitabine was the most effective, producing a sustained therapeutic effect that was dependent on indoleamine 2,3-dioxygenase (IDO) and was associated with expansion of induced regulatory T cells, particularly at the site of disease activity. Treatment with decitabine also caused apoptosis of Th1 and Th17 cells in active arthritis in a highly selective manner. The molecular basis for this selectivity was shown to be ENT1, a nucleoside transporter, which facilitates intracellular entry of the drug and is up-regulated on effector T cells during active arthritis. It was further shown that short-term treatment with decitabine resulted in the generation of a population of regulatory T cells that were able to suppress arthritis upon adoptive transfer. In summary, a therapeutic approach using an approved drug is described that treats active inflammatory disease effectively and generates robust regulatory T cells with the IDO-dependent capacity to maintain remission.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Decitabina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/imunologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Indução de Remissão , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologia
7.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35042768

RESUMO

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Assuntos
Astrócitos , Dopamina , Transportador Equilibrativo 1 de Nucleosídeo , Etanol , Núcleo Accumbens , Receptor A1 de Adenosina , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dopamina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Etanol/farmacologia , Feminino , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptor A1 de Adenosina/metabolismo
8.
Br J Haematol ; 200(6): 812-820, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36464247

RESUMO

Hypoxia-mediated red blood cell (RBC) sickling is central to the pathophysiology of sickle cell disease (SCD). The signalling nucleoside adenosine is thought to play a significant role in this process. This study investigated expression of the erythrocyte type 1 equilibrative nucleoside transporter (ENT1), a key regulator of plasma adenosine, in adult patients with SCD and carriers of sickle cell trait (SCT). Relative quantitative expression analysis of erythrocyte ENT1 was carried out by Western blot and flow cytometry. Patients with SCD with steady state conditions, either with SS or SC genotype, untreated or under hydroxycarbamide (HC) treatment, exhibited a relatively high variability of erythrocyte ENT1, but with levels not significantly different from normal controls. Most strikingly, expression of erythrocyte ENT1 was found to be significantly decreased in patients with SCD undergoing painful vaso-occlusive episode and, unexpectedly, also in healthy SCT carriers. Promoting hypoxia-induced adenosine signalling, the reduced expression of erythrocyte ENT1 might contribute to the pathophysiology of SCD and to the susceptibility of SCT individuals to altitude hypoxia or exercise to exhaustion.


Assuntos
Traço Falciforme , Humanos , Adenosina , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritrócitos/metabolismo , Hipóxia/metabolismo
9.
Anal Chem ; 95(24): 9207-9218, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276019

RESUMO

Nucleoside transporters (NTs) play an important role in the metabolism of nucleoside substances and the efficacy of nucleoside drugs. Its spatial information related to biofunctions at the single-molecule level remains unclear, owing to the limitation of the existing labeling methods and traditional imaging methods. Therefore, we synthesize the inhibitor-based fluorescent probe SAENTA-Cy5 and apply direct stochastic optical reconstruction microscopy (dSTORM) to conduct refined observation of human equilibrative nucleoside transporter 1 (hENT1), the most important and famous member of NTs. We first demonstrate the labeling specificity and superiority of SAENTA-Cy5 to the antibody probe. Then, we found different assembly patterns of hENT1 on the apical and basal membranes, which are further investigated to be caused by varying associations of membrane carbohydrates, membrane classical functional domains (lipid rafts), and associated membrane proteins (EpCAM). Our work provides an efficient method for labeling hENT1, which contributes to realize fine observation of NTs. The findings on the assembly features and potential assembly mechanism of hENT1 promote a better understanding of its biofunction, which facilitates further investigations on how NTs work in the metabolism of nucleoside and nucleoside analogues.


Assuntos
Microscopia , Nucleosídeos , Humanos , Proteínas de Transporte de Nucleosídeos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo
10.
Blood ; 137(25): 3548-3562, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33690842

RESUMO

The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.


Assuntos
Monofosfato de Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Camundongos , Camundongos Knockout
11.
PLoS Genet ; 16(12): e1009286, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370779

RESUMO

Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritropoese , Fatores de Transcrição GATA/metabolismo , Adenosina/metabolismo , Animais , Células Cultivadas , Transportador Equilibrativo 1 de Nucleosídeo/genética , Camundongos , Camundongos Endogâmicos C57BL
12.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834962

RESUMO

Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.


Assuntos
Azacitidina , Resistencia a Medicamentos Antineoplásicos , Transportador Equilibrativo 1 de Nucleosídeo , Leucemia Mieloide Aguda , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Transportador Equilibrativo 1 de Nucleosídeo/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
13.
Turk J Med Sci ; 53(5): 1045-1057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38813043

RESUMO

Background: Levetiracetam (LEV) has been found to have an antihyperalgesic effect via acting on the adenosine system. However, the effects of LEV on the modulation of the adenosine system in the brain have not been elucidated in the prevention of seizures and epilepsy. The present study aimed to explore the possible LEV mechanisms of action in the adenosine signaling systems in an animal model of epilepsy. Methodology: A docking study was initially performed to determine the possible interaction of LEV with adenosine A1 receptors (A1Rs) and equilibrative nucleoside transporters-1 (ENT1). The experimental study was divided into an acute seizure test (32 mice distributed into 4 groups) and a chronic kindling model study (40 mice distributed into 5 groups), followed by gene expression analysis and immunohistochemistry. The kindling model lasted 26 days and took 13 subconvulsive doses of pentylenetetrazole (PTZ) to completely kindle the mice in the PTZ control group. Gene expression changes in the A1Rs, potassium inwardly-rectifying channel 3.2 (Kir3.2), and ENT1 in the brain tissue samples of the mice following treatment with LEV were analyzed using reverse transcription-quantitative polymerase chain reaction, and immunohistochemistry was performed for the A1R protein expression. Results: Docking studies predicted a significant interaction of LEV with A1Rs and ENT1 proteins. Results from the acute testing revealed that caffeine (100 mg/kg) and 8-cyclopentyl-1,3-dipropylxanthine (25 mg/kg) significantly reversed the antiseizure effects of LEV by reversing the percent protection and shortening the onset of the first myoclonic jerk (FMJ) and generalized clonic seizures (GCSs). In the PTZ-induced kindling, LEV demonstrated an increased gene expression of A1Rs and Kir3.2 in the brain. LEV also significantly reduced the gene expression of ENT1. Furthermore, the immunohistochemical analysis showed that LEV increased the protein expression of A1Rs in the brain. Conclusion: Based on these results, it can be concluded that LEV modulates epileptogenesis by acting on the adenosine pathway in the central nervous system.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Epilepsia , Excitação Neurológica , Levetiracetam , Animais , Levetiracetam/farmacologia , Camundongos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/farmacologia , Excitação Neurológica/efeitos dos fármacos , Masculino , Piracetam/farmacologia , Piracetam/análogos & derivados , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/genética , Pentilenotetrazol , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética
14.
Mol Pharmacol ; 99(2): 147-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33262250

RESUMO

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.


Assuntos
Acetatos/farmacologia , Didesoxinucleosídeos/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/genética , Nevirapina/farmacologia , Ticagrelor/farmacologia , Uridina/análogos & derivados , Uridina/metabolismo , Teorema de Bayes , Transporte Biológico , Sistemas CRISPR-Cas , Linhagem Celular , Interações Medicamentosas , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Aprendizado de Máquina , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Uridina/farmacologia
15.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34503974

RESUMO

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Citidina/análogos & derivados , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , SARS-CoV-2/metabolismo , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/metabolismo , Alanina/administração & dosagem , Alanina/metabolismo , Antivirais/administração & dosagem , COVID-19/metabolismo , Citidina/administração & dosagem , Citidina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
16.
Gastroenterology ; 158(3): 679-692.e1, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711924

RESUMO

BACKGROUND & AIMS: Pancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice. METHODS: We obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1-knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured. RESULTS: In pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3ß1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine. CONCLUSIONS: In studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3ß1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents.


Assuntos
Adenocarcinoma/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Proteínas de Transporte de Cátions/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Integrina alfa3/metabolismo , Integrina beta1/metabolismo , Neoplasias Pancreáticas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adenocarcinoma/terapia , Animais , Antimetabólitos Antineoplásicos/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Fluoruracila/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa3/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Esferoides Celulares/efeitos dos fármacos , Taxa de Sobrevida , Gencitabina
17.
Drug Metab Dispos ; 49(7): 479-489, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33980604

RESUMO

Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Nucleosídeos/farmacocinética , Darunavir/farmacocinética , Interações Medicamentosas , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Células HeLa , Humanos , Nucleosídeos/análogos & derivados , Ribavirina/farmacocinética , Ribonucleosídeos/farmacocinética , Tioinosina/análogos & derivados , Tioinosina/farmacocinética
18.
FASEB J ; 34(1): 1516-1531, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914698

RESUMO

Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 2 de Nucleosídeo/antagonistas & inibidores , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo , Tioinosina/análogos & derivados , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Animais , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Masculino , Camundongos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Tioinosina/farmacologia
19.
Neurochem Res ; 46(9): 2403-2414, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152551

RESUMO

MicroRNA-33-3p (miR-33-3p) has been widely investigated for its roles in lipid metabolism and mitochondrial function; however, there are few studies on miR-33-3p in the context of neurological diseases. In this study, we investigated the functional role of miR-33-3p in rat pheochromocytoma PC12 cells. A miR-33-3p mimic was transduced into PC12 cells, and its effects on proliferation, apoptosis, and differentiation were studied using the MTS assay, EdU labeling, flow cytometry, qRT-PCR, western blot, ELISA, and immunofluorescence. We found that miR-33-3p significantly suppressed PC12 cell proliferation, but had no effect on apoptosis. Furthermore, miR-33-3p promoted the differentiation of PC12 cells into Tuj1-positive and choline acetyltransferase-positive neuron-like cells. Mechanistically, miR-33-3p repressed the expression of Slc29a1 in PC12 cells. Importantly, knocking down Slc29a1 in PC12 cells inhibited proliferation and induced differentiation into neuron-like cells. In conclusion, this study showed that miR-33-3p regulated Slc29a1, which in turn controlled the proliferation and differentiation of PC12 cells. Thus, we hypothesize that the miR-33-3p/Slc29a1 axis could be a promising therapeutic target for recovering neurons and the cholinergic nervous system.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Células HEK293 , Humanos , Células PC12 , Ratos
20.
RNA Biol ; 18(sup1): 478-495, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34382915

RESUMO

RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.


Assuntos
Autofagia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Nucleosídeos/metabolismo , RNA/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Transporte Ativo do Núcleo Celular , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/genética , Humanos , Nucleosídeos/química , Nucleosídeos/genética , RNA/genética , Células Tumorais Cultivadas , Replicação Viral , Infecção por Zika virus/genética , Infecção por Zika virus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA