Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.369
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 165, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113037

RESUMO

BACKGROUND: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS: Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS: This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.


Assuntos
Variações do Número de Cópias de DNA , Genoma de Planta , Trifolium , Adaptação Fisiológica/genética , Trifolium/genética
2.
Plant J ; 115(2): 369-385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009644

RESUMO

Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.


Assuntos
Arabidopsis , Trifolium , Trifolium/genética , Trifolium/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Diglicerídeos/metabolismo , Filogenia , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Oxidativo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
3.
BMC Genomics ; 25(1): 128, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297198

RESUMO

BACKGROUND: The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS: In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION: These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.


Assuntos
Genoma de Planta , Trifolium , Trifolium/genética , Fatores de Transcrição/genética , Chumbo , Perfilação da Expressão Gênica
4.
BMC Plant Biol ; 24(1): 467, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807057

RESUMO

BACKGROUND: There is a lack of knowledge on the combined effects of different stresses on plants, in particular different stresses that occur during winter in temperate climates. Perennial herbaceous plants in temperate regions are exposed to many different stresses during winter, but except for the fact that cold temperatures induce resistance to a number of them, very little is known about their interaction effects. Knowledge about stress interactions is needed in order to predict effects of climate change on both agricultural production and natural ecosystems, and to develop adaptation strategies, e.g., through plant breeding. Here, we conducted a series of experiments under controlled conditions to study the interactions between cold (low positive temperature), clover rot infection (caused by Sclerotinia trifoliorum) and freezing, in red clover (Trifolium pratense) accessions. We also compared our results with winter survival in field experiments and studied associations between stress and shoot growth. RESULTS: Exposure to low positive temperatures (cold acclimation) induced resistance to clover rot. There was a clear negative interaction effect between freezing stress and clover rot infection, resulting in up to 37% lower survival rate compared to what would have been expected from the additive effect of freezing and infection alone. Freezing tolerance could continue to improve during incubation under artificial snow cover at 3 °C in spite of darkness, and we observed compensatory shoot growth following freezing after prolonged incubation. At the accession level, resistance to clover rot was negatively correlated with growth in the field during the previous year at a Norwegian location. It was also negatively correlated with the shoot regrowth of control plants after incubation. Clover rot resistance tests under controlled conditions showed limited correlation with clover rot resistance observed in the field, suggesting that they may reveal variation in more specific resistance mechanisms. CONCLUSIONS: We here demonstrate, for the first time, a strong negative interaction between freezing and infection with a winter pathogen. We also characterize the effects of cold acclimation and incubation in darkness at different temperatures on winter stress tolerance, and present data that support the notion that annual cycles of growth and stress resistance are associated at the genetic level.


Assuntos
Congelamento , Estações do Ano , Trifolium , Trifolium/fisiologia , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Estresse Fisiológico , Temperatura Baixa , Doenças das Plantas/microbiologia , Aclimatação , Ascomicetos/fisiologia
5.
BMC Plant Biol ; 24(1): 346, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684940

RESUMO

BACKGROUND: White clover (Trifolium repens L.) is an excellent leguminous cool-season forage with a high protein content and strong nitrogen-fixing ability. Despite these advantages, its growth and development are markedly sensitive to environmental factors. Indole-3-acetic acid (IAA) is the major growth hormone in plants, regulating plant growth, development, and response to adversity. Nevertheless, the specific regulatory functions of Aux/IAA genes in response to abiotic stresses in white clover remain largely unexplored. RESULTS: In this study, we identified 47 Aux/IAA genes in the white clover genome, which were categorized into five groups based on phylogenetic analysis. The TrIAAs promoter region co-existed with different cis-regulatory elements involved in developmental and hormonal regulation, and stress responses, which may be closely related to their diverse regulatory roles. Collinearity analysis showed that the amplification of the TrIAA gene family was mainly carried out by segmental duplication. White clover Aux/IAA genes showed different expression patterns in different tissues and under different stress treatments. In addition, we performed a yeast two-hybrid analysis to investigate the interaction between white clover Aux/IAA and ARF proteins. Heterologous expression indicated that TrIAA18 could enhance stress tolerance in both yeast and transgenic Arabidopsis thaliana. CONCLUSION: These findings provide new scientific insights into the molecular mechanisms of growth hormone signaling in white clover and its functional characteristics in response to environmental stress.


Assuntos
Ácidos Indolacéticos , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Trifolium , Trifolium/genética , Trifolium/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas/genética
6.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
7.
BMC Plant Biol ; 24(1): 950, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394568

RESUMO

BACKGROUND: Soil salinization is a serious environmental hazard, limiting plant growth and production in different agro-ecological zones worldwide. Diethyl aminoethyl hexanoate (DA-6) as an essential plant growth regulator (PGR) exhibits a beneficial role in improving crop growth and stress tolerance. However, the DA-6-regulated effect and mechanism of salt tolerance in plants are still not fully understood. The objective of current study was to disclose salt tolerance induced by DA-6 in relation to changes in water and redox balance, photosynthetic function, ionic homeostasis, and organic metabolites reprogramming in white clover (Trifolium repens). RESULTS: A prolonged duration of salt stress caused water loss, impaired photosynthetic function, and oxidative injury to plants. However, foliar application of DA-6 significantly improved osmotic adjustment (OA), photochemical efficiency, and cell membrane stability under salt stress. In addition, high salinity induced massive accumulation of sodium (Na), but decreased accumulation of potassium (K) in leaves and roots of all plants. DA-6-treated plants demonstrated significantly higher transcript levels of genes involved in uptake and transport of Na and K such as VP1, HKT8, SOS1, NHX2, NHX6, and SKOR in leaves as well as VP1, HKT1, HKT8, H+-ATPase, TPK5, SOS1, NHX2, and SKOR in roots. Metabolomics analysis further illustrated that DA-6 primarily induced the accumulation of glucuronic acid, hexanoic acid, linolenic acid, arachidonic acid, inosose, erythrulose, galactopyranose, talopyranose, urea, 1-monopalmitin, glycerol monostearate, campesterol, stigmasterol, and alanine. CONCLUSIONS: The DA-6 significantly up-regulated transcript levels of multiple genes associated with increased Na+ compartmentalization in vacuoles and Na+ sequestration in roots to reduce Na+ transport to photosynthetic organs, thereby maintaining Na+ homeostasis under salt stress. The accumulation of many organic metabolites induced by the DA-6 could be attributed to enhanced cell wall and membrane structural stability and functionality, OA, antioxidant defense, and downstream signal transduction in leaves under salt stress. The present study provides a deep insight about the synergistic role of DA-6 in salt tolerance of white clover.


Assuntos
Caproatos , Tolerância ao Sal , Trifolium , Trifolium/genética , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Caproatos/metabolismo , Caproatos/farmacologia , Transporte de Íons/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Potássio/metabolismo , Estresse Salino/efeitos dos fármacos
8.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138453

RESUMO

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Assuntos
Temperatura Baixa , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Solo/química , Nutrientes/metabolismo , Cyperaceae/microbiologia , Cyperaceae/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose , Polygonum/microbiologia , Polygonum/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/análise
9.
Mol Ecol ; 33(17): e17484, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072878

RESUMO

Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.


Assuntos
Adaptação Fisiológica , Temperatura , Trifolium , Adaptação Fisiológica/genética , Clima , Variações do Número de Cópias de DNA , Genética Populacional , Genótipo , Cianeto de Hidrogênio/metabolismo , América do Norte , Fenótipo , Trifolium/genética , Trifolium/crescimento & desenvolvimento
10.
Plant Physiol ; 191(3): 2012-2026, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36653329

RESUMO

Legumes acquire soil nutrients through nitrogen-fixing root nodules and lateral roots. To balance the costs and benefits of nodulation, legumes negatively control root nodule number by autoregulatory and hormonal pathways. How legumes simultaneously coordinate root nodule and lateral root development to procure nutrients remains poorly understood. In Medicago (Medicago truncatula), a subset of mature C-TERMINALLY ENCODED PEPTIDE (CEP) hormones can systemically promote nodule number, but all CEP hormones tested to date negatively regulate lateral root number. Here we showed that Medicago CEP7 produces a mature peptide, SymCEP7, that promotes nodulation from the shoot without compromising lateral root number. Rhizobial inoculation induced CEP7 in the susceptible root nodulation zone in a Nod factor-dependent manner, and, in contrast to other CEP genes, its transcription level was elevated in the ethylene signaling mutant sickle. Using mass spectrometry, fluorescence microscopy and expression analysis, we demonstrated that SymCEP7 activity requires the COMPACT ROOT ARCHITECTURE 2 receptor and activates the shoot-to-root systemic effector, miR2111. Shoot-applied SymCEP7 rapidly promoted nodule number in the pM to nM range at concentrations up to five orders of magnitude lower than effects mediated by root-applied SymCEP7. Shoot-applied SymCEP7 also promoted nodule number in White Clover (Trifolium repens) and Lotus (Lotus japonicus), which suggests that this biological function may be evolutionarily conserved. We propose that SymCEP7 acts in the Medicago shoot to counter balance the autoregulation pathways induced rapidly by rhizobia to enable nodulation without compromising lateral root growth, thus promoting the acquisition of nutrients other than nitrogen to support their growth.


Assuntos
Lotus , Medicago truncatula , Rhizobium , Trifolium , Nodulação/genética , Raízes de Plantas/metabolismo , Medicago truncatula/metabolismo , Rhizobium/fisiologia , Lotus/genética , Peptídeos/metabolismo , Trifolium/metabolismo , Hormônios/metabolismo , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose , Regulação da Expressão Gênica de Plantas
11.
Artigo em Inglês | MEDLINE | ID: mdl-38284408

RESUMO

Three yeast isolates, NBRC 115909T, NBRC 115910 and NBRC 116270, were isolated from Trifolium pratense (red clover) flowers collected from Kisarazu, Chiba, Japan. Analysis of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions revealed that these isolates represent a single novel species within the genus Starmerella. Also, no ascospore formation was observed. The yeast isolates were closely related to Starmerella vitae UWOPS 00-107.2T and Starmerella bombi NRRL Y-17081T. They differed from S. vitae, the most closely related species with a validly published name, by ten nucleotide substitutions with two gaps in the D1/D2 domains and 20 nucleotide substitutions in the ITS region. Moreover, the three isolates exhibited distinct phenotypic characteristics from the closely related species. Therefore, we suggest that these three isolates represent a novel species, designated as Starmerella kisarazuensis f.a., sp. nov. The holotype is NBRC 115909T (isotype: CBS 18485T).


Assuntos
Saccharomycetales , Trifolium , Trifolium/genética , Filogenia , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , Flores , Nucleotídeos , DNA Espaçador Ribossômico/genética , Tailândia
12.
Physiol Plant ; 176(5): e14499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221485

RESUMO

Improving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect. In this study, we focused on Panax quinquefolium L. (ginseng) and four treatments were set up: the control without intercropping, P. quinquefolius + ryegrass (Lolium perenne L.), P. quinquefolius + red clover (Trifolium pratense L.), and P. quinquefolius + ryegrass + red clover. An LC-MS/MS system was used to detect the changes in the P. quinquefolius secondary metabolites, and high-throughput sequencing technology was used to determine the changes in the P. quinquefolius' rhizosphere soil microorganisms. Ginsenoside content, soil enzyme activities, and arbuscular mycorrhizal infection rate of P. quinquefolius were also measured using HPLC, ELISA kits, and microscopy, respectively. Co-intertia and Pearson's analysis were performed to explore the relationship between the metabolites and the P. quinquefolius microorganisms. Intercropping significantly increased the content of ginsenoside metabolites and recruited a large number of beneficial bacteria to the P. quinquefolius rhizosphere. The P. quinquefolius secondary metabolites were associated with the rhizosphere microbial community. For example, the dominant microorganisms, such as Acidobacteriota and Chloroflexi, played a key role in promoting the synthesis of ginsenoside Rd and (20R) ginsenoside Rg3 by P. quinquefolius. Intercropping led to changes in the P. quinquefolius secondary metabolites by driving and reshaping the rhizosphere microorganisms. These findings revealed the potential application of intercropping for improving the quality of P. quinquefolius.


Assuntos
Ginsenosídeos , Panax , Rizosfera , Panax/microbiologia , Panax/metabolismo , Panax/fisiologia , Panax/crescimento & desenvolvimento , Ginsenosídeos/metabolismo , Microbiologia do Solo , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Agricultura/métodos , Trifolium/microbiologia , Trifolium/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/fisiologia
13.
Physiol Plant ; 176(4): e14433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994561

RESUMO

Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.


Assuntos
Cádmio , Germinação , Sementes , Trifolium , Cádmio/toxicidade , Germinação/efeitos dos fármacos , Trifolium/efeitos dos fármacos , Trifolium/metabolismo , Trifolium/genética , Trifolium/crescimento & desenvolvimento , Trifolium/fisiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Açúcares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
14.
Arch Virol ; 169(11): 216, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377979

RESUMO

Soybean dwarf virus (SbDV; family Tombusviridae, genus Luteovirus, species Luteovirus glycinis) is an RNA plant virus that is transmitted solely by aphids in a persistent, circulative and non-propagative manner. SbDV causes significant losses in cultivated Fabaceae, especially in subterranean clover (Trifolium subterraneum) pastures of mainland Australia. SbDV isolates are classified into four phenotypically distinguishable strains: YP, YS, DP, and DS. Y and D strains differ primarily in their host range, and P and S strains in their primary vector species. Genetically, Y and D strains separate into two clades in every genomic region except for the N-terminal region of the readthrough domain (N-RTD), in which P and S strains separate. SbDV diversity in Australia has yet to be investigated, so in this study, 41 isolates were collected from six different host species across two production regions of Australia: the south coast of Western Australia ('south-west') and northern New South Wales/southern Queensland ('north-east'). A near-complete genome sequence of each isolate was obtained, and together with all 50 whole-genome sequences available in the GenBank database, underwent phylogenetic analysis of the whole genome nt and the N-RTD aa sequences. At the whole-genome level, the isolates separated into D and Y clades. At the N-RTD level, most of the isolates separated into P and S clades. All south-west isolates and 11 of the 31 north-east isolates were in the Y clade, and the remaining 20 north-east isolates were in the D clade. Except for one isolate that fell outside the P and S clades, all south-west and north-east isolates were in the P clade, suggesting that they are transmitted by Acyrthosiphon pisum and Myzus persicae. Available biological data largely supported the phenotypic inferences made from the phylogenetic analysis, suggesting that genetic data can provide critical epidemiological insights, provided that sufficient biological data have been collected.


Assuntos
Variação Genética , Genoma Viral , Luteovirus , Filogenia , Doenças das Plantas , Doenças das Plantas/virologia , Genoma Viral/genética , Luteovirus/genética , Luteovirus/classificação , Luteovirus/isolamento & purificação , Austrália , Animais , Afídeos/virologia , Especificidade de Hospedeiro , RNA Viral/genética , Trifolium/virologia
15.
Environ Res ; 256: 119222, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795949

RESUMO

This study investigated the bioindicator potential of Amaranthus retroflexus L., Plantago lanceolata L., Rumex acetosa L., and Trifolium pratense L. including the use of Lolium multiflorum L. as a reference species, for heavy metal pollution monitoring, in particular Zinc (Zn), Cadmium (Cd), Nickel (Ni), and Lead (Pb). Controlled heavy metal contamination was applied through irrigation with metal nitrate solutions two levels of contamination (low and high). The study also focused on analyzing heavy metals concentration in plant tissues and related physiological responses. Distinct physiological responses to heavy metal stress were observed among the investigated species, highlighting unique variations in their reactions. Hydrogen peroxide, malondialdehyde content, and enzymatic activities emerged as reliable indicators of plant stress induced by heavy metal solutions. P. lanceolata displayed elevated Zn concentrations in both roots and leaves (3271 ± 337 and 4956 ± 82 mg kg-1). For Pb, L. multiflorum and P. lanceolata showed highest root concentrations (2964 ± 937 and 1605 ± 289 mg kg-1), while R. acetosa had higher leaf concentration (1957 ± 147 mg kg-1). For Ni, L. multiflorum had the highest root concentration (1148 ± 93 mg kg-1), and P. lanceolata exhibited the highest leaf concentration (2492 ± 28 mg kg-1). P. lanceolata consistently demonstrated the highest Cd concentrations in both roots (126 ± 21 mg kg-1) and leaves (163 ± 12 mg kg-1). These results provide valuable insights for selecting effective bioindicator species to establish control strategies for heavy metal pollution.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Amaranthus/química , Amaranthus/metabolismo , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Trifolium/química
16.
J Dairy Sci ; 107(3): 1450-1459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806636

RESUMO

The effects of grass silage and red clover silage on milk fatty acid (FA) composition are extensively studied, but little is known of their effects on minor lipid constituents of milk fat globule membrane. We investigated the effects of forage:concentrate (FC) ratio in grass silage-based diets and forage type (grass silage vs. red clover silage) on selected molecular species of milk phospholipids (PL) and the FA composition of PL. Ten multiparous Nordic Red cows were offered following dietary treatments: grass silage-based diets containing 70:30 (HG) or 30:70 (LG) FC ratio or a red clover silage-based diet (RC) comprising 50:50 FC ratio on a dry matter basis. The most abundant molecular species within the phosphatidylcholines was 16:0-18:1 phosphatidylcholine that was increased by 18% in HG compared with LG milk. Dietary treatments did not affect the relative proportion of 18:1-18:1+18:0-18:2 phosphatidylethanolamine that was the most prevalent species (ca. 44%-45%) in that class. We identified the d18:1-22:0 sphingomyelin as the most abundant sphingomyelin species that tended to increase in HG milk compared with LG. The FC ratio did not affect the relative proportions of saturated FA nor monounsaturated FA in PL, but the proportion of cis-9 18:1 was elevated in HG versus LG milk, whereas the proportion of 18:2n-6 was 50% higher in LG versus HG milk. The RC diet increased monounsaturated FA and 18:3n-3 levels in PL compared with grass silage-based diets and decreased the relative proportion of saturated FA. However, the RC diet did not affect the relative proportion of polyunsaturated FA in PL, although red clover silage typically increases the proportion of polyunsaturated FA in milk fat. This study provides valuable knowledge of the minor lipid components in milk on species level in relation to common feeding strategies in high-forage systems.


Assuntos
Ácidos Graxos , Isótopos , Titânio , Trifolium , Feminino , Animais , Bovinos , Fosfolipídeos , Esfingomielinas , Dieta/veterinária , Ácidos Graxos Monoinsaturados , Fosfatidilcolinas , Poaceae
17.
J Dairy Sci ; 107(4): 2129-2142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939834

RESUMO

The objective of this study was to quantify the farm gate nitrogen (N) offset potential of perennial ryegrass (Lolium perenne L.; PRG) white clover (Trifolium repens L.; WC) swards by comparing the herbage and milk production from dairy farmlets that were simulations of full farming systems. A study was established where 120 cows were randomly assigned to 4 farmlets of 10.9 ha (stocking rate: 2.75 cow/ha), composed of 20 paddocks each. Cows were fed 526 kg of DM of concentrate on average each year. The 4 grazing treatments were PRG-only at 150 or 250 kg of N/ha and PRG-WC at 150 or 250 kg of N/ha. Cows remained in their treatment group for an entire grazing season and were re-randomized as they calved across treatments each year. As cows calved in the spring as standard practice in Ireland, they were rotationally grazed from early February both day and night (weather permitting) to mid-November, to a target postgrazing sward height of 4.0 cm. Mean sward WC content was 18.1% and 15.4% for the 150 and 250 kg of N/ha PRG-WC treatments, respectively over the 3-yr period. When WC was included, lowering the N rate did not reduce pregrazing yield, pregrazing height, or herbage removed, but those factors decreased significantly when WC was absent. Total annual herbage DM production was 13,771, 15,242, 14,721, and 15,667 kg of DM/ha for PRG-only swards receiving 150 or 250 kg of N/ha and PRG-WC swards receiving 150 or 250 kg of N/ha, respectively. In addition, when WC was present, compressed postgrazing sward heights were lower (4.10 vs. 4.21 cm) and herbage allowance (approximately 17 kg/cow feed allocation per cow per day) higher than the high-N control (+ 0.7 kg of DM/cow per day). There was a significant increase in milk production, both per cow and per hectare, when WC was included in PRG swards. Over the 3-yr study, cows grazing PRG-WC had greater milk (+304 kg) and milk solids (+31 kg of fat + protein) yields than cows grazing PRG-only swards. This significant increase in milk production suggests that the inclusion of WC in grazing systems can be effectively used to increase milk production per cow and per hectare and help offset nitrogen use. This result shows the potential to increase farm gate N use efficiency and reduce the N surplus compared with PRG-dominant sward grazing systems receiving 250 kg of N/ha, without negatively affecting milk solids yield or herbage production, thus increasing farm profit by €478/ha.


Assuntos
Lolium , Trifolium , Feminino , Bovinos , Animais , Leite/metabolismo , Lactação , Nitrogênio/metabolismo , Ração Animal/análise , Indústria de Laticínios , Estações do Ano , Medicago , Dieta/veterinária
18.
J Dairy Sci ; 107(4): 2066-2086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863298

RESUMO

Our goal was to investigate the effect of diets containing baleages harvested from alfalfa-grass or red clover-grass mixture on production performance, ruminal fermentation and microbiota taxa relative abundance, milk fatty acid profile, and nutrient utilization in dairy cows. Twenty Jersey cows (18 multiparous and 2 primiparous) averaging (mean ± SD) 148 ± 45.2 days in milk and 483 ± 65.4 kg of body weight in the beginning of the study were used in a randomized complete block design with repeated measures over time. The experiment lasted 9 wk, with a 2 wk covariate period followed by 7 wk of data and sample collection (wk 4 and 7 used in the statistical analyses). Cows were fed diets containing (dry matter basis) 35% of a concentrate mash and the following forage sources: (1) 65% second- and third-cut (32.5% each) alfalfa-grass mixture baleages (ALF) or (2) 65% second- and third-cut (32.5% each) red clover-grass mixture baleages (RC). Diets did not affect dry matter intake, milk yield, and concentrations of milk fat and true protein. In contrast, milk fat yield tended to decrease and energy-corrected milk yield decreased with feeding RC versus ALF. The apparent total-tract digestibilities of dry matter, organic matter, and ash-free neutral detergent fiber, milk proportions of trans-10 18:1, cis-9,cis-12,cis-15 18:3, and total n-3 fatty acids, ruminal molar proportion of acetate, and plasma concentrations of Leu, Phe, and Val all increased in RC versus ALF. Diet × week interactions were found for several parameters, most notably ruminal molar proportions of propionate and butyrate, ruminal NH3-N, milk urea N, plasma urea N, and plasma His concentrations, urinary N excretion, enteric CH4 production, and all energy efficiency variables. Specifically, ruminal NH3-N and plasma urea N concentrations, urinary excretion of N, and CH4 production decreased in cows fed RC in wk 4 but not in wk 7. Milk urea N concentration decreased and that of plasma His increased with feeding RC during wk 4 and 7, although the magnitude of treatments difference varied between the sampling periods. Efficiency of energy utilization calculated as milk energy/metabolizable energy decreased and that of tissue energy/ME increased in RC versus ALF cows in wk 4, suggesting that ME was portioned toward tissue and not milk in the RC diet. Interactions were also observed for the relative abundance of the rumen bacterial phyla Verrucomicrobiota and Fibrobacterota, with cows offered RC showing greater values than those receiving ALF in wk 4 but no differences in wk 7. Several diet × week interactions were detected in the present study implying short-term treatment responses and warranting further investigations.


Assuntos
Leite , Trifolium , Feminino , Bovinos , Animais , Leite/metabolismo , Poaceae/metabolismo , Medicago sativa/metabolismo , Trifolium/metabolismo , Lactação/fisiologia , Fermentação , Dieta/veterinária , Ácidos Graxos/metabolismo , Nutrientes , Ureia/metabolismo , Rúmen/metabolismo , Digestão , Zea mays/metabolismo
19.
J Dairy Sci ; 107(6): 3543-3557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211692

RESUMO

The increasing cost of milk production, in association with tighter manure N application regulations and challenges associated with ammonia emissions in many countries, has increased interest in feeding lower crude protein (CP) diets based on legume silages. Most studies have focused on alfalfa silage, and little information is available on low-CP diets based on red clover silage. Our objectives were to examine the effects of dietary CP content and supplementing a low-CP diet with dietary starch or rumen-protected Met (RPMet) on the performance, metabolism, and nitrogen use efficiency (NUE; milk N output/N intake) in dairy cows fed a red clover and grass silage-based diet. A total of 56 Holstein-Friesian dairy cows were blocked and randomly allocated to 1 of 4 diets over a 14-wk feeding period. Diets were based on red clover and grass silages at a ratio of 50:50 on a dry matter (DM) basis and were fed as a total mixed ration, with a 53:47 ratio of forage to concentrate (DM basis). The diets were formulated to supply a similar metabolizable protein (MP) content, and had a CP concentration of either 175 g/kg DM (control [CON]) or 150 g/kg DM (low-protein [LP]), or LP supplemented with either additional barley as a source of starch (LPSt; +64 g/kg DM) or RPMet (LPM; +0.3 g/100 g MP). At the end of the 14-wk feeding period, 20 cows (5 per treatment) continued to be fed the same diets for a further 6 d, and total urine output and fecal samples were collected. We observed that dietary treatment did not affect DM intake, with a mean of 21.5 kg/d; however, we also observed an interaction between diet and week with intake being highest in cows fed LPSt in wk 4 and CON in wk 9 and 14. Mean milk yield, 4% fat-corrected milk, and energy-corrected milk were not altered by treatment. Similarly, we found no effect of dietary treatment on milk fat, protein, or lactose content. In contrast, milk and plasma urea concentrations were highest in cows fed CON. The concentration of blood plasma ß-hydroxybutyrate was highest in cows receiving LPM and lowest in LPSt. Apparent NUE was 28.6% in cows fed CON and was higher in cows fed any of the low-protein diets (LP, LPSt, or LPM), with a mean value of 34.2%. The sum of milk fatty acids with a chain length below C16:0 was also highest in cows fed CON. We observed that dietary treatment did not affect the apparent whole-tract nutrient digestibility of organic matter, N, neutral detergent fiber, and acid detergent fiber, with mean values of 0.785, 0.659, 0.660, and 0.651 kg/kg respectively, but urinary N excretion was approximately 60 g/d lower in cows fed the low-CP diets compared with CON. We conclude that reducing the CP content of red clover and grass silage-based diets from 175 to 150 g/kg DM while maintaining MP supply did not affect performance, but reduced the urinary N excretion and improved NUE, and that supplementing additional starch or RPMet had little further effect.


Assuntos
Dieta , Proteínas Alimentares , Suplementos Nutricionais , Lactação , Metionina , Leite , Nitrogênio , Rúmen , Silagem , Amido , Animais , Bovinos , Feminino , Nitrogênio/metabolismo , Metionina/metabolismo , Dieta/veterinária , Amido/metabolismo , Rúmen/metabolismo , Leite/química , Leite/metabolismo , Proteínas Alimentares/metabolismo , Ração Animal , Trifolium/metabolismo , Poaceae/metabolismo
20.
Ecotoxicol Environ Saf ; 284: 117001, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236654

RESUMO

It is estimated that up to 50 % of arable lands worldwide are acidic, and most crops are severely inhibited due to the high active aluminum (Al). Trifolium repens is an excellent legume forage with a certain acid tolerance, although it is affected by Al toxicity in acidic soil. In this study, physiological and transcriptomic responses of different white clover varieties were analyzed when exposed to a high-level of Al stress. The results revealed that Trifolium repens had a high level of Al toxicity tolerance, and accumulated nearly 70 % of Al3+ in its roots. Al toxicity significantly inhibited the root length and root activity, decreased the chlorophyll (Chl) content and photosynthetic pigments, while significantly increased the intercellular CO2 concentration (Ci). The content of malondialdehyde (MDA), electrolyte leakage (EL), proline and reactive oxygen species (ROS) were significantly accumulated under Al stress. Furthermore, a total of 27,480 differentially expressed genes (DEGs) were identified after the treatment. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that most Al-responsive genes enriched to chloroplast thylakoid membrane, chloroplast stroma and photosynthesis in Haifa leaf while in MAG leaf highly enriched in response to regulation of defense response, which could induce the different tolerance of the two cultivars to Al stress. Besides, pectin methylesterase (PME), glycosyl transferases (GT1) and chalcone synthase genes associated with cell wall biosynthesis may improve the Al accumulation and enhance tolerance of Al toxicity. The results established here would help to understand the morphological structure, physiological and biochemical response, and molecular mechanism of white clover under Al tolerance.


Assuntos
Alumínio , Perfilação da Expressão Gênica , Poluentes do Solo , Trifolium , Trifolium/efeitos dos fármacos , Trifolium/genética , Alumínio/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA