RESUMO
Using an electrochemical C(sp3)-H fluorination reaction, a series of α-fluorinated tropane compounds were synthesized and their druglikeness parameters were assessed to compare with the parent compounds. Improvements were observed in membrane permeability, P-gp liability, and inhibitory effects on hERG and Nav1.5 channels, accompanied with a trend of decreased aqueous solubility and microsomal stability. It was also revealed that α-fluorination reduced the basicity of tropane nitrogen atom for about 1000-fold.
Assuntos
Halogenação , Solubilidade , Tropanos , Humanos , Tropanos/química , Tropanos/síntese química , Tropanos/farmacologia , Relação Estrutura-Atividade , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Animais , Estrutura Molecular , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidoresRESUMO
New derivatives of tropane scaffold were prepared from the reaction of their thione or thioamide derivatives with α-halocarbonyl compounds. The structures of all new derivatives were assured and proved with their spectral data. The novel tropane derivatives were examined for their cytotoxicity on two colon tumor cell lines; Caco2 and HCT116 cells. The most active compounds 3, 4, 5, 9d and 14a displayed significant antitumor activities with IC50 range of 9.50 - 30.15 µM compared to doxorubicin. Moreover, they revealed reduced cytotoxic effect on WI-38 normal ones, signifying their great safety. With the aim of better understanding the inhibitory potential of such compounds on heat-shock protein 90 (Hsp90), there activities were assessed against such enzyme demonstrating high inhibitory activities with IC50 range of 56.58-78.85 nM. Western blotting was carried out to ensure the inhibitory activity on Hsp90, results showed that 3 markedly suppressed Hsp90 expression on Caco2 cell line. Additionally, a molecular docking analysis of the most potent derivatives at the Hsp90 binding site was carried out in order to approve the performed in vitro assays.
Assuntos
Antineoplásicos , Neoplasias do Colo , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90 , Simulação de Acoplamento Molecular , Tropanos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tropanos/farmacologia , Tropanos/química , Tropanos/síntese química , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologiaRESUMO
This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40â mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40â mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40â mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.
Assuntos
Analgésicos , Simulação de Acoplamento Molecular , Peixe-Zebra , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Tropanos/farmacologia , Tropanos/isolamento & purificação , Tropanos/química , Edema/tratamento farmacológico , Edema/induzido quimicamente , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Bignoniaceae/química , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura MolecularRESUMO
Seven new tropane alkaloids, including five monomeric (1-5), one dimeric (6), and one trimeric (7) 3α-nortropane ester, along with two known monomeric nortropane alkaloids (8 and 9), were isolated from the leaves and bark of Pellacalyx saccardianus. Their structures, including the absolute configuration of the enantiomeric pair of (±)-6, were elucidated by comprehensive spectroscopic analyses. Alkaloids 6 and 7 showed cytotoxicity toward human pancreatic cancer cell lines (AsPC-1, BxPC3, PANC-1, and SW1990). Alkaloids 1, 4, and 9 induced a smooth muscle relaxation effect comparable to that of atropine (Emax 106.1 ± 7.5%, 97.0 ± 5.2%, 100.9 ± 1.4%, 111.7 ± 1.7%, respectively) on isolated rat tracheal rings.
Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Músculo Liso/efeitos dos fármacos , Rhizophoraceae/química , Tropanos/farmacologia , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Malásia , Masculino , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Traqueia/efeitos dos fármacos , Tropanos/isolamento & purificaçãoRESUMO
Epibatidine is a potent analgetic agent with very high affinity for brain nicotinic acetylcholine receptors (nAChR). We determined the activity profiles of three epibatidine derivatives, RTI-36, RTI-76, and RTI-102, which have affinity for brain nAChR equivalent to that of epibatidine but reduced analgetic activity. RNAs coding for nAChR monomeric subunits and/or concatamers were injected into Xenopus oocytes to obtain receptors of defined subunit composition and stoichiometry. The epibatidine analogs produced protracted activation of high sensitivity (HS) α4- and α2-containing receptors with the stoichiometry of 2alpha:3beta subunits but not low sensitivity (LS) receptors with the reverse ratio of alpha and beta subunits. Although not strongly activated by the epibatidine analogs, LS α4- and α2-containing receptors were potently desensitized by the epibatidine analogs. In general, the responses of α4(2)ß2(2)α5 and ß3α4ß2α6ß2 receptors were similar to those of the HS α4ß2 receptors. RTI-36, the analog closest in structure to epibatidine, was the most efficacious of the three compounds, also effectively activating α7 and α3ß4 receptors, albeit with lower potency and less desensitizing effect. Although not the most efficacious agonist, RTI-76 was the most potent desensitizer of α4- and α2-containing receptors. RTI-102, a strong partial agonist for HS α4ß2 receptors, was effectively an antagonist for LS α4ß2 receptors. Our results highlight the importance of subunit stoichiometry and the presence or absence of specific accessory subunits for determining the activity of these drugs on brain nAChR, affecting the interpretation of in vivo studies since in most cases these structural details are not known. SIGNIFICANCE STATEMENT: Epibatidine and related compounds are potent ligands for the high-affinity nicotine receptors of the brain, which are therapeutic targets and mediators of nicotine addiction. Far from being a homogeneous population, these receptors are diverse in subunit composition and vary in subunit stoichiometry. We show the importance of these structural details for drug activity profiles, which present a challenge for the interpretation of in vivo experiments since conventional methods, such as in situ hybridization and immunohistochemistry, cannot illuminate these details.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Agonistas Nicotínicos/farmacologia , Subunidades Proteicas/metabolismo , Piridinas/química , Receptores Nicotínicos/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Humanos , Estrutura Molecular , Complexos Multiproteicos/metabolismo , Agonistas Nicotínicos/química , Subunidades Proteicas/genética , Receptores Nicotínicos/genética , Tropanos/química , Tropanos/farmacologia , Xenopus/genéticaRESUMO
A unified synthetic approach was developed that enabled the synthesis of diverse tropane-related scaffolds. The key intermediates that were exploited were cycloadducts formed by reaction between 3-hydroxy-pyridinium salts and vinyl sulfones or sulfonamides. The diverse tropane-related scaffolds were formed by addition of substituents to, cyclisation reactions of, and fusion of additional ring(s) to the key bicyclic intermediates. A set of 53 screening compounds was designed, synthesised and evaluated in order to determine the biological relevance of the scaffolds accessible using the synthetic approach. Two inhibitors of Hedgehog signalling, and four compounds with weak activity against the parasite P. falciparum, were discovered. Three of the active compounds may be considered to be indotropane or pyrrotropane pseudo natural products in which a tropane is fused with a fragment from another natural product class. It was concluded that the unified synthetic approach had yielded diverse scaffolds suitable for the design of performance-diverse screening libraries.
Assuntos
Antimaláricos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Tropanos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Proteínas Hedgehog/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tropanos/síntese química , Tropanos/químicaRESUMO
A new series of hybrid compounds with tropinone and thiazole rings in the structure was designed and synthesized as potential anticancer agents. They were tested against human multiple myeloma (RPMI 8226), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), and mouse skin melanoma (B16-F10) cell lines. Toxicity was tested on human normal skin fibroblasts (HSF) and normal colon fibroblasts (CCD-18Co). The growth inhibition mechanism of the most active derivative was analyzed through investigation of its effect on the distribution of cell cycle phases and ability to induce apoptosis and necrosis in RPMI 8226 and A549 cancer cells. The tyrosinase inhibitory potential was assessed, followed by molecular docking studies. Compounds 3a-3h show high anticancer activity against MDA-MB-231 and B16-F10 cell lines with IC50 values of 1.51-3.03 µM. Moreover, the cytotoxic activity of the investigated compounds against HSF and CCD-18Co cells was 8-70 times lower than against the cancer cells or no toxicity was shown in our tests, with derivative 3a being particularly successful. The mechanism of action of compound 3a in RPMI 8226 cell was shown to be through induction of cell death through apoptosis. The derivatives show ability to inhibit the tyrosinase activity with a mixed mechanism of inhibition. The final molecular docking results showed for IC50 distinct correlation with experiment.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Tropanos/síntese química , Tropanos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioinformática , Humanos , Concentração Inibidora 50 , Camundongos , Eletricidade Estática , TermodinâmicaRESUMO
The study compared effectiveness of intranasal administration of glypin (human recombinant modified glucagon-like peptide-1) and reference drug Victoza in BALB/c mice. The minimum effective dose of intranasal glypin was 0.5 mg/kg, and a 2-fold elevation of this dose increased the parameters of glypin activity up to the maximal levels. During the first 2 h after intranasal administration, the effectiveness of glypin greatly surpassed that of Victoza. Duration of action and the time course of antihyperglycemic activity of intranasal glypin (1 mg/kg) matched to the best parameters attained during its subcutaneous application. A high effectiveness of intranasal glypin opens the vistas to its further examination and employment.
Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Tropanos/administração & dosagem , Administração Intranasal , Animais , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Feminino , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Teste de Tolerância a Glucose , Controle Glicêmico , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Liraglutida/administração & dosagem , Liraglutida/análogos & derivados , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Fatores de Tempo , Tropanos/farmacologiaRESUMO
PURPOSE: Patients with CO intoxication were demonstrated to exhibit white matter (WM) injuries, changes in substantia nigra, dopamine transporter dysfunctions of striatum and Parkinsonism symptoms. We aimed to investigate the relationship between WM injuries of dopaminergic pathways and dopamine transporter dysfunctions of the striatum in patients with acute CO intoxication using both diffusion kurtosis imaging (DKI) and single photon-emission computed tomography (SPECT). MATERIALS AND METHODS: Seventeen patients with acute CO intoxication and 19 age- and gender-matched healthy subjects were enrolled. DKI data were acquired from all participants and Tc-99m-TRODAT-1 SPECT scan was performed on each patient. DKI datasets were fitted to obtain axial, radial and mean diffusivity, fractional anisotropy, axial, radial and mean kurtosis for voxel-based comparison. In addition, the TRODAT-1 binding ratio of the striatum was calculated using the occipital cortices as a reference. In significant regions, correlational analysis was performed to understand the relationship between DKI indices and TRODAT-1 binding ratio. RESULTS: The results showed that DKI indices were significantly altered in multiple WM regions broadly involving the basal ganglia-thalamocortical circuit and nigrostriatal pathway. The correlation analysis further revealed significant correlations between DKI indices and the TRODAT-1 binding ratio in the nigrostriatal pathway (absolute correlation coefficients ranged from 0.5992 to 0.6950, p<0.05), suggesting that CO-induced early WM injuries were associated with dopamine transporter dysfunctions of striatum. CONCLUSION: We concluded that DKI and Tc-99m-TRODAT-1 SPECT scans were helpful in early detection of global WM injuries associated with dysfunctions of dopamine transporter in patients with acute CO intoxication. KEY POINTS: ⢠Voxel-based diffusion kurtosis imaging analysis was helpful in globally detecting early white matter injuries in patients with acute CO intoxication. ⢠CO-induced early white matter injuries were broadly located in basal ganglia-thalamocortical circuit and nigrostriatal pathway. ⢠Early white matter injuries in dopaminergic pathways were significantly correlated with dopamine transporter dysfunctions of the striatum.
Assuntos
Intoxicação por Monóxido de Carbono/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Compostos de Organotecnécio/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tropanos/farmacologia , Substância Branca/diagnóstico por imagem , Doença Aguda , Adulto , Anisotropia , Intoxicação por Monóxido de Carbono/metabolismo , Feminino , Humanos , Masculino , Compostos Radiofarmacêuticos/farmacologia , Substância Branca/metabolismoRESUMO
Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.
Assuntos
Alcaloides/biossíntese , Alcaloides/farmacologia , Erythroxylaceae/química , Solanaceae/química , Alcaloides/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Estrutura Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/farmacologia , Metabolismo Secundário , Tropanos/síntese química , Tropanos/química , Tropanos/farmacologiaRESUMO
This study investigates the anti-cancer potential of Aclidinium bromide (INN) in glioblastoma. Glioblastoma cell lines U251 and U87 were treated with INN and its effects on cell migration and invasion were assessed by transwell migration and invasion assays., The effects of INN on proliferation and apoptosis were detected by CCK-8 kit and flow cytometry, and Western blotting determined anti-apoptotic proteins and signaling pathway changes. The results show that INN effectively suppressed proliferation, migration and invasion and induced apoptosis in U251 and U87 cells, respectively. Furthermore, the expression levels of the Bcl-2 anti-apoptotic protein was significantly decreased while Bax and caspase-3 expression were both increased in glioblastoma cells (all, p<0.05). Moreover, INN inactivated the PI3K/AKT signaling pathway by down-regulating the level of p-AKT, p-mTOR, P70 and CyclinD1 (all, p<0.05). In conclusion, our data suggests that INN could provide novel anticancer therapy in the treatment of glioblastoma.
Assuntos
Glioma/patologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Tropanos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Invasividade NeoplásicaRESUMO
PURPOSE: To analyse the short-term interaction between a short period of myopic and hyperopic defocus and the muscarinic antagonist homatropine upon the choroidal thickness and ocular biometrics of healthy subjects. METHODS: Thirty young adults (15 myopes and 15 emmetropes) aged 18-35 years had subfoveal choroidal thickness (ChT) and ocular biometry measurements taken before, 30 min, and 60 min following the introduction of monocular optical blur (0.00 D, +3.00 D and -3.00 D) combined with administration of either 2% homatropine or placebo (total of six conditions). Each combination of optical blur and drug was tested on different days, 2 days apart, in randomised order. For choroidal thickness, we captured three SD OCT images (5 mm, cross scans centred at the fovea with 999 A-scans and 50 B-scans) with the Copernicus SOCT HR instrument (www.optopol.com). A masked observer manually segmented the average B-scan images to derive subfoveal choroidal thickness measurements from each measurement session. RESULTS: The choroid exhibited significant thinning after imposing hyperopic defocus (-3.00 D) combined with placebo (-11 ± 3 µm, p < 0.001). Homatropine prevented the significant choroidal thinning response with hyperopic defocus (+3 ± 2 µm), and the magnitude of ChT change was significantly different to placebo and hyperopic defocus (p < 0.001). There was a significant increase in ChT after the introduction of myopic defocus (+3.00 D) with placebo (+12 ± 3 µm, p < 0.0001) and homatropine combined with myopic defocus also caused a similar increase in ChT (+11 ± 3 µm; p < 0.001). Eyes treated with homatropine alone exhibited a significant increase in ChT (+14 ± 3 µm, p < 0.0001). There was no evidence of differences in choroidal response between refractive groups. Axial length also underwent small but significant changes (all p < 0.01 except homatropine/hyperopic blur and placebo) that were of similar magnitude, but of opposite direction to the changes in choroidal thickness. CONCLUSIONS: Homatropine appears to block the thinning effect of hyperopic defocus on choroidal thickness but did not enhance the thickening effect of myopic defocus. The changes in the choroid may relate to the different pathways in the eye's response to myopic and hyperopic blur or reflect an upper limit on the capacity of the choroid to thicken in the short-term.
Assuntos
Biometria/métodos , Corioide/patologia , Hiperopia/tratamento farmacológico , Miopia/tratamento farmacológico , Refração Ocular/efeitos dos fármacos , Tomografia de Coerência Óptica/métodos , Tropanos/farmacologia , Adolescente , Adulto , Comprimento Axial do Olho , Corioide/efeitos dos fármacos , Progressão da Doença , Feminino , Voluntários Saudáveis , Humanos , Hiperopia/diagnóstico , Hiperopia/fisiopatologia , Masculino , Miopia/diagnóstico , Miopia/fisiopatologia , Parassimpatolíticos/farmacologia , Retina/patologia , Adulto JovemRESUMO
Tropane alkaloids and their derivatives are anticholinergic drugs with narrow therapeutic range. Here we characterize the organic cation transporters from the SLC22 (OCT1, OCT2, and OCT3) and the SLC47 families (MATE1 and MATE2-K) as potential mediators of the renal and extra-renal excretion, the two major roads of elimination of these substances. All analyzed compounds inhibited and the quaternary amine derivatives ipratropium and trospium were strongly transported by OCTs and MATEs. Overexpression of OCTs or MATEs in HEK293 cells resulted in an up to 63-fold increase in the uptake of ipratropium (Km of 0.32 µm to OCT2 and Vmax of 3.34 nmol×mg protein-1×min-1 to MATE1). The transcellular transport of ipratropium was 16-fold higher in OCT2-MATE1 and 10-fold higher in OCT1-MATE1 overexpressing compared to control MDCKII cells. Genetic polymorphisms in OCT1 and OCT2 affected ipratropium uptake and clinically relevant concentration of ondansetron and pyrithiamine inhibited ipratropium uptake via MATEs by more than 90%. This study suggests that OCT1, OCT2 and MATEs may be strongly involved in the renal and extra-renal elimination of ipratropium and other quaternary amine alkaloids. These substances have a notoriously narrow therapeutic range and the drug-drug interactions suggested here should be further critically evaluated in humans.
Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tropanos/metabolismo , Tropanos/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cães , Interações Medicamentosas , Células HEK293 , Humanos , Ipratrópio/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Transporte de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Tropanos/químicaRESUMO
UNLABELLED: Deficiency of multidrug resistance 2 (mdr2), a canalicular phospholipid floppase, leads to excretion of low-phospholipid "toxic" bile causing progressive cholestasis. We hypothesize that pharmacological inhibition of the ileal, apical sodium-dependent bile acid transporter (ASBT), blocks progression of sclerosing cholangitis in mdr2(-/-) mice. Thirty-day-old, female mdr2(-/-) mice were fed high-fat chow containing 0.006% SC-435, a minimally absorbed, potent inhibitor of ASBT, providing, on average, 11 mg/kg/day of compound. Bile acids (BAs) and phospholipids were measured by mass spectrometry. Compared with untreated mdr2(-/-) mice, SC-435 treatment for 14 days increased fecal BA excretion by 8-fold, lowered total BA concentration in liver by 65%, reduced total BA and individual hydrophobic BA concentrations in serum by >98%, and decreased plasma alanine aminotransferase, total bilirubin, and serum alkaline phosphatase levels by 86%, 93%, and 55%, respectively. Liver histology of sclerosing cholangitis improved, and extent of fibrosis decreased concomitant with reduction of hepatic profibrogenic gene expression. Biliary BA concentrations significantly decreased and phospholipids remained low and unchanged with treatment. The phosphatidylcholine (PC)/BA ratio in treated mice corrected toward a ratio of 0.28 found in wild-type mice, indicating decreased bile toxicity. Hepatic RNA sequencing studies revealed up-regulation of putative anti-inflammatory and antifibrogenic genes, including Ppara and Igf1, and down-regulation of several proinflammatory genes, including Ccl2 and Lcn2, implicated in leukocyte recruitment. Flow cytometric analysis revealed significant reduction of frequencies of hepatic CD11b(+) F4/80(+) Kupffer cells and CD11b(+) Gr1(+) neutrophils, accompanied by expansion of anti-inflammatory Ly6C(-) monocytes in treated mdr2(-/-) mice. CONCLUSION: Inhibition of ASBT reduces BA pool size and retention of hydrophobic BA, favorably alters the biliary PC/BA ratio, profoundly changes the hepatic transcriptome, attenuates recruitment of leukocytes, and abrogates progression of murine sclerosing cholangitis.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Bile/química , Colangite Esclerosante/prevenção & controle , Óxidos N-Cíclicos/uso terapêutico , Progressão da Doença , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Tropanos/uso terapêutico , Animais , Óxidos N-Cíclicos/farmacologia , Feminino , Camundongos , Camundongos Knockout , Tropanos/farmacologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
A series of GPR119 agonists based on a 5-nitropyrimidine scaffold bearing endo-azabicyclic substituents were synthesized and evaluated for their GPR119 agonistic activities. Most compounds exhibited much stronger EC50 values than that of oleoylethanolamide (OEA). Among them, derivatives from endo-azabicyclic alcohols displayed more potent GPR119 agonistic activities than compounds with endo-azabicyclic amines. Especially the optimized compounds (6, 7, 8, 12, 17) were shown to have potent biological activities and were identified as full agonists. Isopropyl carbamate compound 8 synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (0.6nM). Generally 2-fluoro substitution of the aryl group at the C4 position of 5-nitropyrimidine scaffold resulted in the increase of biological activity.
Assuntos
Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/farmacologia , Tropanos/farmacologia , Células HEK293 , Humanos , Pirimidinas/síntese química , Sulfonas/síntese química , Tropanos/síntese químicaRESUMO
Activation of sigma receptors at delayed time points has been shown to decrease injury following ischemic stroke. The mixed σ1/σ2 receptor agonist, 5-ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole (afobazole), provides superior long-term outcomes compared to other σ ligands in the rat middle cerebral artery occlusion (MCAO) stroke model. Experiments using the MCAO model were carried out to determine the molecular mechanism involved in the beneficial effects of afobazole. Administration of afobazole (3 mg/kg) at delayed time points post-stroke significantly increased the number of microglia and astrocytes detected in the ipsilateral hemisphere at 96 h post-surgery. Morphological analysis of the microglia indicated that a greater number of these cells were found in the ramified resting state in MCAO animals treated with afobazole relative to MCAO vehicle controls. Similarly, fewer reactive astrocytes were detected in the injured hemisphere of afobazole-treated animals. Both the enhanced survival and reduced activation of glial cells were abolished by co-application of either a σ1 (BD-1063) or a σ2 (SM-21) receptor antagonist with afobazole. To gain further insight into the mechanisms by which afobazole lessens stroke injury, we probed the brain sections for markers of neuroinflammation (tumor necrosis factor α) and nitrosative stress (S-nitrosocysteine). Data show that afobazole significantly reduces S-nitrosocysteine levels, but does not alter tumor necrosis factor α expression 96 h after an ischemic stroke. Taken together our data indicate that afobazole acting via both σ1 and σ2 receptors decreases stroke injury by enhancing glial cell survival, blocking ischemia-induced glial cell activation, and decreasing nitrosative stress.
Assuntos
Benzimidazóis/farmacologia , Isquemia Encefálica/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Morfolinas/farmacologia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores sigma/agonistas , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Butiratos/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Infarto da Artéria Cerebral Média/patologia , Piperazinas/farmacologia , Ratos , S-Nitrosotióis/metabolismo , Acidente Vascular Cerebral/patologia , Tropanos/farmacologia , Receptor Sigma-1RESUMO
BACKGROUND: Inhaled corticosteroid (ICS) with long-acting beta-2 agonists is a well-documented combination therapy for chronic obstructive pulmonary disease (COPD) based on its additive anti-inflammatory properties. By contrast, the recommendation of ICS in combination with long-acting muscarinic antagonist (LAMA) is not evidence-based. In this study, neutrophils obtained from COPD patients were used to compare the anti-inflammatory effects of aclidinium bromide (a long-acting muscarinic antagonist) with corticosteroids and their potential additive effect. METHODS: Human sputum and blood neutrophils were isolated from healthy individuals (n = 37), patients with stable COPD (n = 52) and those with exacerbated COPD (n = 16). The cells were incubated with corticosteroid fluticasone propionate (0.1 nM-1 µM), aclidinium bromide (0.1 nM-1 µM) or a combination thereof and stimulated with 1 µg of lipopolysaccharide/ml or 5 % cigarette smoke extract. Levels of the pro-inflammatory mediators interleukin-8, matrix metalloproteinase-9, CCL-5, granulocyte-macrophage colony-stimulating factor and interleukin-1ß were measured and the mechanisms of corticosteroid resistance evaluated at the end of the incubation. RESULTS: The non-neuronal cholinergic system was over-expressed in neutrophils from COPD patients, as evidenced by increases in the expression of muscarinic receptors (M2, M4 and M5), choline acetyltransferase and vesicular acetylcholine transporter. Aclidinium bromide demonstrated anti-inflammatory effects on neutrophils from COPD patients, reversing their resistance to corticosteroids. Additive effects of combined aclidinium bromide and fluticasone propionate in blocking M2 receptor levels, inhibiting phosphoinositide 3-kinase-δ and enhancing the glucocorticoid response element transcription factor were demonstrated and were accompanied by an increase in the corticosteroid-induced expression of anti-inflammatory-related genes. CONCLUSIONS: LAMAs potentiate the anti-inflammatory effects of corticosteroids in neutrophils from COPD patients in vitro, thus providing a scientific rationale for their use in combination with corticosteroids in the treatment of COPD.
Assuntos
Anti-Inflamatórios/farmacologia , Broncodilatadores/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Fluticasona/farmacologia , Antagonistas Muscarínicos/farmacologia , Neutrófilos/efeitos dos fármacos , Sistema Colinérgico não Neuronal/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Tropanos/farmacologia , Idoso , Estudos de Casos e Controles , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Escarro/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismoRESUMO
Stress is a response of the organism to homeostasis-threatening stimuli and is coordinated by two main neural systems: the hypothalamic-pituitary-adrenal and the autonomic nervous system. Acute restraint stress (RS) is a model of unavoidable stress, which is characterized by autonomic responses including an increase in mean arterial pressure (MAP) and heart rate (HR), as well as a drop in tail temperature. The prelimbic cortex (PL) has been implicated in the modulation of functional responses caused by RS. The present study aimed to evaluate the role of PL GABAergic neurotransmission in the modulation of autonomic changes induced by RS. Bilateral microinjection of the GABAA receptor antagonist bicuculline methiodide into the PL reduced pressor and tachycardic responses evoked by RS, in a dose-dependent manner, without affecting the tail temperature drop evoked by RS. In order to investigate which peripheral autonomic effector modulated the reduction in RS-cardiovascular responses caused by the blockade of PL GABAA receptors, rats were intravenously pretreated with either atenolol or homatropine methylbromide. The blockade of the cardiac sympathetic nervous system with atenolol blunted the reducing effect of PL treatment with bicuculline methiodide on RS-evoked pressor and tachycardic responses. The blockade of the parasympathetic nervous system with homatropine methylbromide, regardless of affecting the beginning of the tachycardic response, did not impact on the reduction of RS-evoked tachycardic and pressor responses caused by the PL treatment with bicuculline methiodide. The present results indicate that both cardiac sympathetic and parasympathetic activities are involved in the reduction of RS-evoked cardiovascular responses evidenced after the blockade of PL GABAA receptors by bicuculline methiodide.
Assuntos
Sistema Límbico/fisiopatologia , Receptores de GABA-A/metabolismo , Estresse Psicológico/fisiopatologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Atenolol/farmacologia , Bicuculina/administração & dosagem , Bicuculina/análogos & derivados , Bicuculina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Antagonistas GABAérgicos/administração & dosagem , Antagonistas GABAérgicos/farmacologia , Masculino , Microinjeções , Parassimpatolíticos/farmacologia , Ratos , Ratos Wistar , Restrição Física , Transmissão Sináptica , Taquicardia/induzido quimicamente , Taquicardia/fisiopatologia , Tropanos/farmacologiaRESUMO
Long-acting muscarinic receptor antagonists (LAMAs) have been reported to attenuate cough in preclinical and clinical studies. The present study was performed on rabbits to compare aclidinium and tiotropium efficacy in the downregulation of the cough reflex. This reflex was evoked by citric acid inhalation in unanesthetized animals and by both citric acid inhalation and mechanical stimulation of the tracheobronchial tree in anesthetized animals 90 min following the inhalation of each drug (nebulizer output always at 1 mL/min). Aclidinium 4 mg/mL and tiotropium 200 µg/mL inhaled in 1 min proved to have similar protective effect on methacholine-induced bronchoconstriction in anesthetized animals. The total dosage employed for aclidinium and tiotropium was 4 mg and 200 µg, respectively. In awake animals, similar reductions in the cough number were observed following 10-min inhalation of each drug with a slight, not significant tendency to higher antitussive effects for aclidinium. In anesthetized animals, 1-min inhalation of each drug caused similar depressant effects on cough responses induced by both mechanical and chemical stimulation. A complete suppression of cough responses to mechanical stimuli was seen in some preparations. The results strongly suggest that the LAMA-induced downregulation of cough may be mediated not only by transient receptor potential vanilloid type 1 channels, as already reported, but also by acid-sensing ion channels and mechanoreceptors. The route of administration along with the more rapid hydrolysis of aclidinium into inactive metabolites minimize potential systemic side effects and give to this drug a very favorable safety profile.
Assuntos
Tosse/tratamento farmacológico , Antagonistas Muscarínicos/farmacologia , Brometo de Tiotrópio/farmacologia , Tropanos/farmacologia , Administração por Inalação , Anestesia/métodos , Animais , Antitussígenos/administração & dosagem , Antitussígenos/farmacologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/administração & dosagem , Broncodilatadores/farmacologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Masculino , Cloreto de Metacolina/farmacologia , Antagonistas Muscarínicos/administração & dosagem , Coelhos , Brometo de Tiotrópio/administração & dosagem , Tropanos/administração & dosagem , VigíliaRESUMO
A series of novel 3ß-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki=0.6nM), 6c and 6i (Ki=0.4nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki=62.7nM and Ki=30.5nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.