RESUMO
Respiratory syncytial virus (RSV) is a worldwide public health concern for which no vaccine is available. Elucidation of the prefusion structure of the RSV F glycoprotein and its identification as the main target of neutralizing antibodies have provided new opportunities for development of an effective vaccine. Here, we describe the structure-based design of a self-assembling protein nanoparticle presenting a prefusion-stabilized variant of the F glycoprotein trimer (DS-Cav1) in a repetitive array on the nanoparticle exterior. The two-component nature of the nanoparticle scaffold enabled the production of highly ordered, monodisperse immunogens that display DS-Cav1 at controllable density. In mice and nonhuman primates, the full-valency nanoparticle immunogen displaying 20 DS-Cav1 trimers induced neutralizing antibody responses â¼10-fold higher than trimeric DS-Cav1. These results motivate continued development of this promising nanoparticle RSV vaccine candidate and establish computationally designed two-component nanoparticles as a robust and customizable platform for structure-based vaccine design.
Assuntos
Anticorpos Neutralizantes/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinação/métodos , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Caveolina 1 , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Cultura Primária de Células , Vírus Sinciciais Respiratórios/patogenicidade , Vacinas/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/fisiologiaRESUMO
Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options1. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia3,4. Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKCζ). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKCζ activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.
Assuntos
Receptor IGF Tipo 1/metabolismo , Receptores Virais/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Internalização do Vírus , Linhagem Celular , Núcleo Celular/metabolismo , Ativação Enzimática , Humanos , Fusão de Membrana/efeitos dos fármacos , Fosfoproteínas/metabolismo , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/patogenicidade , Vírus Sinciciais Respiratórios/fisiologia , Carga Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , NucleolinaRESUMO
Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.
Assuntos
Farmacorresistência Viral/genética , Mutação , Vírus Sinciciais Respiratórios/genética , Animais , Antivirais/toxicidade , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células Hep G2 , Humanos , Palivizumab/toxicidade , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Vírus Sinciciais Respiratórios/patogenicidade , Genética Reversa/métodos , Células VeroRESUMO
We developed a model of inflammation and airway remodeling in C57 mice provoked by exosomes derived from bone marrow mesenchymal stem cells infected by respiratory syncytial virus (RSV). The mean size of control and infected exosomes in vitro were 167.9 and 118.5 nm, respectively. After induction of modeled pathology, the severity of airway inflammation and its remodeling were analyzed by histopathological methods. In addition, the blood levels of inflammatory factors IL-10, IL-17, transforming growth factor-ß (TGF-ß), and TNFα were assayed; in the lung tissues, the expression levels of MMP-2, MMP-9, α-smooth muscle actin (α-SMA), and TGF-ß were measured. In the developed model, the effects of RSV-induced and non-induced exosomes were compared with those of inactivated and non-inactivated RSV. Intranasal administration of RSV-induced exosomes decreased the levels of serum inflammatory factors IL-10 and IL-17 and increased the expression of serum proinflammatory cytokine TNFα. Increased levels of MMP-2, MMP-9, and α-SMA, enhanced expression of TGF-ß in the lung tissue, and pathological staining of the lung tissues indicated infiltration with inflammatory cells and luminal constriction. Thus, RSV-induced exosomes can provoke airway inflammation and remodeling in mice similar to RSV, while non-induced exosomes cannot produce such alterations.
Assuntos
Remodelação das Vias Aéreas , Modelos Animais de Doenças , Exossomos , Interleucina-10 , Interleucina-17 , Metaloproteinase 2 da Matriz , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Infecções por Vírus Respiratório Sincicial , Fator de Necrose Tumoral alfa , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Interleucina-10/metabolismo , Interleucina-10/sangue , Interleucina-17/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Células da Medula Óssea/metabolismo , FemininoRESUMO
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), a NAD+ dependent deacetylase, has been associated with induction of autophagy, reprogramming cellular metabolism, and regulating immune mediators. In this study, we investigated the role of SIRT1 in bone marrow dendritic cell (BMDC) function during RSV infection. SIRT1 deficient (SIRT1 -/-) BMDC showed a defect in mitochondrial membrane potential (Δâ¦m) that worsens during RSV infection. This defect in Δâ¦m caused the generation of elevated levels of reactive oxygen species (ROS). Furthermore, the oxygen consumption rate (OCR) was reduced as assessed in Seahorse assays, coupled with lower levels of ATP in SIRT1-/- DC. These altered responses corresponded to altered innate cytokine responses in the SIRT1-/- DC in response to RSV infection. Reverse Phase Protein Array (RPPA) functional proteomics analyses of SIRT1-/- and WT BMDC during RSV infection identified a range of differentially regulated proteins involved in pathways that play a critical role in mitochondrial metabolism, autophagy, oxidative and ER stress, and DNA damage. We identified an essential enzyme, acetyl CoA carboxylase (ACC1), which plays a central role in fatty acid synthesis and had significantly increased expression in SIRT1-/- DC. Blockade of ACC1 resulted in metabolic reprogramming of BMDC that ameliorated mitochondrial dysfunction and reduced pathologic innate immune cytokines in DC. The altered DC responses attenuated Th2 and Th17 immunity allowing the appropriate generation of anti-viral Th1 responses both in vitro and in vivo during RSV infection thus reducing the enhanced pathogenic responses. Together, these studies identify pathways critical for appropriate DC function and innate immunity that depend on SIRT1-mediated regulation of metabolic processes.
Assuntos
Dendritos/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Sirtuína 1/metabolismo , Animais , Autofagia/imunologia , Citocinas/metabolismo , Dendritos/virologia , Células Dendríticas/imunologia , Feminino , Homeostase/imunologia , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Sirtuína 1/fisiologia , Células Th17/imunologia , Células Th2/imunologiaAssuntos
Infecções por Vírus Respiratório Sincicial/mortalidade , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19 , Pré-Escolar , Ensaios Clínicos Fase III como Assunto , Aprovação de Drogas , Feminino , Humanos , Imunidade Materno-Adquirida/imunologia , Lactente , Recém-Nascido , Inflamação/imunologia , Gravidez , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/química , Vírus Sinciciais Respiratórios/química , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologiaRESUMO
Respiratory syncytial virus (RSV) is a major cause of pediatric respiratory disease. Large numbers of neutrophils are recruited into the airways of children with severe RSV disease. It is not clear whether or how neutrophils enhance recovery from disease or contribute to its pathology. Using an in vitro model of the differentiated airway epithelium, we found that the addition of physiological concentrations of neutrophils to RSV-infected nasal cultures was associated with greater epithelial damage with lower ciliary activity, cilium loss, less tight junction expression (ZO-1), and more detachment of epithelial cells than is seen with RSV infection alone. This was also associated with a decrease in infectious virus and fewer RSV-positive cells in cultures after neutrophil exposure than in preexposure cultures. Epithelial damage in response to RSV infection was associated with neutrophil activation (within 1 h) and neutrophil degranulation, with significantly greater cellular expression of CD11b and myeloperoxidase and higher levels of neutrophil elastase and myeloperoxidase activity in apical surface media than in media with mock-infected airway epithelial cells (AECs). We also recovered more apoptotic neutrophils from RSV-infected cultures (>40%) than from mock-infected cultures (<5%) after 4 h. The results of this study could provide important insights into the role of neutrophils in host response in the airway.IMPORTANCE This study shows that the RSV-infected human airway drives changes in the behavior of human neutrophils, including increasing activation markers and delaying apoptosis, that result in greater airway damage and viral clearance.
Assuntos
Neutrófilos/imunologia , Mucosa Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Adulto , Células Epiteliais/virologia , Humanos , Neutrófilos/virologia , Cultura Primária de Células , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Vírus Sinciciais Respiratórios/fisiologia , Viroses/metabolismoRESUMO
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in infants and young children. The vaccine-enhanced disease (VED) has greatly hindered the development of an RSV vaccine. Currently, there are no licensed vaccines for RSV. In this study, immunization of mice with hepatitis B virus core particles containing a conserved region of the G protein (HBc-tG) combined with interleukin-35 (IL-35) elicited a Th1-biased response and a high frequency of regulatory T (Treg) cells and increased the levels of IL-10, transforming growth factor ß, and IL-35 production. Importantly, immunization with HBc-tG together with IL-35 protected mice against RSV infection without vaccine-enhanced immunopathology. To explore the mechanism of how IL-35 reduces lung inflammation at the gene expression level, transcription profiles were obtained from lung tissues of immunized mice after RSV infection by the Illumina sequencing technique and further analyzed by a systems biology method. In total, 2,644 differentially expressed genes (DEGs) were identified. Twelve high-influence modules (HIMs) were selected from these DEGs on the basis of the protein-protein interaction network. A detailed analysis of HIM10, involved in the immune response network, revealed that Il10 plays a key role in regulating the host response. The selected DEGs were consistently confirmed by quantitative real-time PCR (qRT-PCR). Our results demonstrate that IL-35 inhibits vaccine-enhanced immunopathology after RSV infection and has potential for development in novel therapeutic and prophylactic strategies.IMPORTANCE In the past few decades, respiratory syncytial virus (RSV) has still been a major health concern worldwide. The vaccine-enhance disease (VED) has hindered RSV vaccine development. A truncated hepatitis B virus core protein vaccine containing the conserved region (amino acids 144 to 204) of the RSV G protein (HBc-tG) had previously been shown to induce effective immune responses and confer protection against RSV infection in mice but to also lead to VED. In this study, we investigated the effect of IL-35 on the host response and immunopathology following RSV infection in vaccinated mice. Our results indicate that HBc-tG together with IL-35 elicited a balanced immune response and protected mice against RSV infection without vaccine-enhanced immunopathology. Applying a systems biology method, we identified Il10 to be the key regulator in reducing the excessive lung inflammation. Our study provides new insight into the function of IL-35 and its regulatory mechanism of VED at the network level.
Assuntos
Vírus da Hepatite B/imunologia , Interleucinas/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Vírus da Hepatite B/metabolismo , Humanos , Imunização , Interleucinas/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Vacinação , Células Vero , Proteínas do Core Viral/imunologiaRESUMO
Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.
Assuntos
Imunidade Inata , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Proteínas Virais/metabolismo , Viroses/imunologia , Vírus/imunologia , Animais , HIV/imunologia , HIV/metabolismo , HIV/patogenicidade , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Herpesviridae/imunologia , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Humanos , Vírus do Sarampo/imunologia , Vírus do Sarampo/metabolismo , Vírus do Sarampo/patogenicidade , Moléculas com Motivos Associados a Patógenos/química , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Viroses/virologia , Vírus/metabolismo , Vírus/patogenicidadeRESUMO
BACKGROUND: Potentially, orally administered antibodies specific to enteric pathogens could be administered to infants to prevent diarrheal infections, particularly in developing countries where diarrhea is a major problem. However, to prevent infection, such antibodies would need to resist degradation within the gastrointestinal tract. METHODS: Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used in this study as a model for examining the digestion of neutralizing antibodies to enteric pathogens in infants. The survival of this recombinant IgG1 across digestion in 11 infants was assayed via an anti-idiotype ELISA and RSV F protein-specific ELISA. Concentrations were controlled for any dilution or concentration that occurred in the digestive system using mass spectrometry-based quantification of co-administered, orally supplemented, indigestible polyethylene glycol (PEG-28). RESULTS: Binding activity of Palivizumab IgG1 decreased (26-99%) across each phase of in vivo digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. CONCLUSION: Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. IMPACT: Binding activity of palivizumab IgG1 decreased (26-99%) across each phase of in vivo infant digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. Palivizumab was likely degraded by proteases and changes in pH introduced in the gut. Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. The monoclonal antibody IgG1 tested was not stable across the infant gastrointestinal tract. The observation of palivizumab reduction was unlikely due to dilution in the gastrointestinal tract. The results of this work hint that provision of antibody could be effective in preventing enteric pathogen infection in infants. Orally delivered recombinant antibodies will need to either be dosed at high levels to compensate for digestive losses or be engineered to better resist digestion. Provision of enteric pathogen-specific recombinant antibodies to at-risk infants could provide a new and previously unexplored pathway to reducing the infection in infants. The strategy of enteric recombinant antibodies deserves more investigation throughout medicine as a novel means for treatment of enteric disease targets.
Assuntos
Antivirais/metabolismo , Digestão , Trato Gastrointestinal/metabolismo , Palivizumab/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/imunologia , Administração Oral , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antivirais/administração & dosagem , Estabilidade de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Interações Hospedeiro-Patógeno , Humanos , Recém-Nascido , Masculino , Palivizumab/administração & dosagem , Estabilidade Proteica , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidadeRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Assuntos
COVID-19/transmissão , SARS-CoV-2/patogenicidade , Carga Viral , Adenoviridae/patogenicidade , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Controle de Doenças Transmissíveis , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cricetinae , Enterovirus/patogenicidade , Furões , Humanos , Macaca mulatta , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Orthomyxoviridae/patogenicidade , Vírus Sinciciais Respiratórios/patogenicidade , Rhinovirus/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/virologia , Viroses/epidemiologia , Viroses/transmissão , Viroses/virologiaRESUMO
Respiratory syncytial virus (RSV) is leading cause of respiratory tract infections in early childhood. Gut microbiota is closely related with the pulmonary antiviral immunity. Recent evidence shows that gut dysbiosis is involved in the pathogenesis of RSV infection. Therefore; pharmacological and therapeutic strategies aiming to readjust the gut dysbiosis are increasingly important for the treatment of RSV infection. In this study, we evaluated the therapeutic effects of a probiotic mixture on RSV-infected mice. This probiotic mixture consisted of Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and VSL#3 was orally administered to neonatal mice on a daily basis either for 1 week in advance or for 3 days starting from the day of RSV infection. We showed that administration of the probiotics protected against RSV-induced lung pathology by suppressing RSV infection and exerting an antiviral response via alveolar macrophage (AM)-derived IFN-ß. Furthermore, administration of the probiotics reversed gut dysbiosis and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in RSV-infected mice, which consequently led to elevated serum SCFA levels. Moreover, administration of the probiotics restored lung microbiota in RSV-infected mice. We demonstrated that the increased production of IFN-ß in AMs was attributed to the increased acetate in circulation and the levels of Corynebacterium and Lactobacillus in lungs. In conclusion, we reveal that probiotics protect against RSV infection in neonatal mice through a microbiota-AM axis, suggesting that the probiotics may be a promising candidate to prevent and treat RSV infection, and deserve more research and development in future.
Assuntos
Antivirais/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Macrófagos Alveolares/metabolismo , Probióticos/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Animais , Disbiose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Interferon beta/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/patogenicidadeRESUMO
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Assuntos
Interações Hospedeiro-Patógeno/imunologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/imunologia , Vacinas/uso terapêutico , Pré-Escolar , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/virologia , Imunidade Inata/imunologia , Lactente , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidade , Vacinas/imunologiaRESUMO
BACKGROUND Bronchiolitis is common in infants under 2 years of age. Most infections are caused by respiratory syncytial virus (RSV), but the importance of Mycoplasma pneumoniae (MP) in the etiology of bronchiolitis is unclear. MATERIAL AND METHODS We investigated the clinical characteristics of bronchiolitis caused by MP in 79 infants admitted to Shunde Women's and Children's Hospital of Guangdong Medical University and Sanshui Women's and Children's Healthcare Hospital from January 2016 to December 2018. Infection with MP was confirmed by the presence of serum immunoglobulin M. RESULTS The peak detection rates of MP in the years 2016, 2017, and 2018 were 19.2%, 21.3%, and 24.0%, respectively. In each year, the peak of MP infections occurred during June and July. MP-associated bronchiolitis was mainly seen in infants from 6 to 12 months of age. Compared with RSV-associated bronchiolitis, the age of patients with bronchiolitis associated with MP was significantly older and they had a shorter hospital stay (all P<0.01 or P<0.05). CONCLUSIONS Our study indicated that MP is an important cause of bronchiolitis, with peaks of occurrence during June and July every year. Pulmonary interstitial infiltration was a characteristic of this infection. Azithromycin treatment can shorten the course of MP-associated bronchiolitis. Investigation of the epidemiological characteristics of pediatric MP-associated bronchiolitis can help diagnose and treat the disease correctly.
Assuntos
Bronquiolite/epidemiologia , Pneumonia por Mycoplasma/epidemiologia , Bronquiolite/diagnóstico , China/epidemiologia , Estudos Epidemiológicos , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Tempo de Internação , Masculino , Mycoplasma pneumoniae/patogenicidade , Pneumonia por Mycoplasma/complicações , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios/patogenicidadeRESUMO
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Assuntos
Células Epiteliais/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/patogenicidade , Infecções Respiratórias/tratamento farmacológico , Titânio/farmacologia , Animais , Asma/tratamento farmacológico , Asma/etiologia , Brônquios/efeitos dos fármacos , Brônquios/virologia , Líquido da Lavagem Broncoalveolar/citologia , Células Epiteliais/virologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Vírus Sinciciais Respiratórios/efeitos dos fármacosRESUMO
BACKGROUND: Respiratory syncytial virus (RSV) frequently causes acute lower respiratory infection in children under 5, representing a high burden in Gavi-eligible countries (mostly low-income and lower-middle-income). Since multiple RSV interventions, including vaccines and monoclonal antibody (mAb) candidates, are under development, we aim to evaluate the key drivers of the cost-effectiveness of maternal vaccination and infant mAb for 72 Gavi countries. METHODS: A static Multi-Country Model Application for RSV Cost-Effectiveness poLicy (MCMARCEL) was developed to follow RSV-related events monthly from birth until 5 years of age. MCMARCEL was parameterised using country- and age-specific demographic, epidemiological, and cost data. The interventions' level and duration of effectiveness were guided by the World Health Organization's preferred product characteristics and other literature. Maternal vaccination and mAb were assumed to require single-dose administration at prices assumed to align with other Gavi-subsidised technologies. The effectiveness and the prices of the interventions were simultaneously varied in extensive scenario analyses. Disability-adjusted life years (DALYs) were the primary health outcomes for cost-effectiveness, integrated with probabilistic sensitivity analyses and Expected Value of Partially Perfect Information analysis. RESULTS: The RSV-associated disease burden among children in these 72 countries is estimated at an average of 20.8 million cases, 1.8 million hospital admissions, 40 thousand deaths, 1.2 million discounted DALYs, and US$611 million discounted direct costs. Strategy 'mAb' is more effective due to its assumed longer duration of protection versus maternal vaccination, but it was also assumed to be more expensive. Given all parameterised uncertainty, the optimal strategy of choice tends to change for increasing willingness to pay (WTP) values per DALY averted from the current situation to maternal vaccination (at WTP > US$1000) to mAB (at WTP > US$3500). The age-specific proportions of cases that are hospitalised and/or die cause most of the uncertainty in the choice of optimal strategy. Results are broadly similar across countries. CONCLUSIONS: Both the maternal and mAb strategies need to be competitively priced to be judged as relatively cost-effective. Information on the level and duration of protection is crucial, but also more and better disease burden evidence-especially on RSV-attributable hospitalisation and death rates-is needed to support policy choices when novel RSV products become available.
Assuntos
Efeitos Psicossociais da Doença , Análise Custo-Benefício/métodos , Infecções por Vírus Respiratório Sincicial/economia , Vírus Sinciciais Respiratórios/patogenicidade , Pré-Escolar , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/prevenção & controleRESUMO
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world, causing serious illness and death and creating a heavy burden on the healthcare systems of many countries. Since the virus first emerged in late November 2019, its spread has coincided with peak circulation of several seasonal respiratory viruses, yet some studies have noted limited coinfections between SARS-CoV-2 and other viruses. We use a mathematical model of viral coinfection to study SARS-CoV-2 coinfections, finding that SARS-CoV-2 replication is easily suppressed by many common respiratory viruses. According to our model, this suppression is because SARS-CoV-2 has a lower growth rate (1.8/d) than the other viruses examined in this study. The suppression of SARS-CoV-2 by other pathogens could have implications for the timing and severity of a second wave.
Assuntos
COVID-19/virologia , Coinfecção/virologia , Resfriado Comum/epidemiologia , Influenza Humana/epidemiologia , Modelos Teóricos , COVID-19/epidemiologia , Coinfecção/epidemiologia , Resfriado Comum/virologia , Humanos , Influenza Humana/virologia , Vírus Sinciciais Respiratórios/patogenicidade , Rhinovirus/patogenicidade , SARS-CoV-2/patogenicidadeRESUMO
BACKGROUND: Acute respiratory infections are a common disease in children with high mortality and morbidity. Multiple pathogens can cause acute respiratory infections. A 2-year survey of hospitalized children was conducted to understand the epidemic situation, seasonal spread of pathogens and the improvement of clinical diagnosis, treatment and prevention of disease in Huzhou, China. METHODS: From September 2017 to August 2019, 3121 nasopharyngeal swabs from hospitalized children with acute respiratory infections were collected, and real-time PCR was used to detect various pathogens. Then, pathogen profiles, frequency and seasonality were analyzed. RESULTS: Of the 3121 specimens, 14.45% (451/3121) were positive for at least one pathogen. Of the single-pathogen infections, RSV (45.61%, 182/399) was the most frequent pathogen, followed by PIVs (14.79%, 59/399), ADV (14.54%, 58/399), MP (10.78%, 43/399), and IAV (5.26%, 21/399). Of the 52 coinfections, RSV + PIVs viruses were predominantly identified and accounted for 40.38% (21/52) of cases. RSV was the most frequent pathogen in all four groups. The highest positive rate of the pathogens occurred in the winter (21.26%), followed by autumn (14.98%), the summer (14.11%) and the spring (12.25%). CONCLUSION: Viruses are the main pathogens in hospitalized children with acute respiratory infections in Huzhou city, Zhejiang Province, China. Among the pathogens, RSV had the highest detection rate, and MP is also a common pathogen among children with acute respiratory infections. This study provided a better understanding of the distribution of pathogens in children of different ages and seasons, which is conducive to the development of more reasonable treatment strategies and prevention and control measures.
Assuntos
Infecções por Chlamydophila/epidemiologia , Infecções por Vírus de DNA/epidemiologia , Vírus de DNA/patogenicidade , Pneumonia por Mycoplasma/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Doença Aguda/epidemiologia , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/patogenicidade , Coinfecção/microbiologia , Coinfecção/virologia , Vírus de DNA/genética , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidade , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/patogenicidade , Infecções Respiratórias/epidemiologia , Estações do AnoRESUMO
We are ignoring evidence suggesting that the diagnosis of bronchiolitis encompasses several diseases with distinct underlying mechanisms, considerable heterogeneity in treatment responses, and ultimately different therapeutic targets. Understanding this heterogeneity may be the only way to deliver appropriate, stratified treatments.
Assuntos
Bronquiolite/diagnóstico , Bronquiolite/virologia , Humanos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidadeRESUMO
Bronchiolitis is a common viral illness that affects the lower respiratory tract of infants and young children. The disease is characterized by wheezing and increased mucus production and can range from mild to severe in terms of respiratory distress. This article reviews the epidemiology, clinical presentation, and treatment of bronchiolitis.