Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Virol ; 97(5): e0048923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097156

RESUMO

Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Glicoproteína da Espícula de Coronavírus , Animais , Galinhas , Vírus da Bronquite Infecciosa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligopeptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Virol ; 96(5): e0208621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985993

RESUMO

Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.


Assuntos
Infecções por Coronavirus/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Tristetraprolina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adenina/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Regulação da Expressão Gênica , Humanos , Vírus da Bronquite Infecciosa/metabolismo , Vírus da Bronquite Infecciosa/patogenicidade , Interleucina-6/genética , Interleucina-8/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Transcricional , Regulação para Cima , Uridina/metabolismo , Células Vero
3.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232993

RESUMO

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19 , Infecções por Coronavirus/imunologia , Humanos , Vírus da Bronquite Infecciosa/metabolismo , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas , Proteínas não Estruturais Virais/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073283

RESUMO

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.


Assuntos
Infecções por Coronavirus/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Interleucina-8/metabolismo , Resposta a Proteínas não Dobradas/genética , Alphacoronavirus/metabolismo , Alphacoronavirus/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Gammacoronavirus/metabolismo , Gammacoronavirus/patogenicidade , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Vírus da Bronquite Infecciosa/metabolismo , Vírus da Bronquite Infecciosa/patogenicidade , Interleucina-8/genética , Fosforilação , Vírus da Diarreia Epidêmica Suína/metabolismo , Vírus da Diarreia Epidêmica Suína/patogenicidade , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Regulação para Cima , Células Vero , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
J Biol Chem ; 294(19): 7797-7809, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902814

RESUMO

Avian coronaviruses, including infectious bronchitis virus (IBV), are important respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is responsible for binding to host tissues. Glycosylation sites in the spike protein are highly conserved across viral genotypes, suggesting an important role for this modification in the virus life cycle. Here, we analyzed the N-glycosylation of the receptor-binding domain (RBD) of IBV strain M41 spike protein and assessed the role of this modification in host receptor binding. Ten single Asn-to-Ala substitutions at the predicted N-glycosylation sites of the M41-RBD were evaluated along with two control Val-to-Ala substitutions. CD analysis revealed that the secondary structure of all variants was retained compared with the unmodified M41-RBD construct. Six of the 10 glycosylation variants lost binding to chicken trachea tissue and an ELISA-presented α2,3-linked sialic acid oligosaccharide ligand. LC/MSE glycomics analysis revealed that glycosylation sites have specific proportions of N-glycan subtypes. Overall, the glycosylation patterns of most variant RBDs were highly similar to those of the unmodified M41-RBD construct. In silico docking experiments with the recently published cryo-EM structure of the M41 IBV spike protein and our glycosylation results revealed a potential ligand receptor site that is ringed by four glycosylation sites that dramatically impact ligand binding. Combined with the results of previous array studies, the glycosylation and mutational analyses presented here suggest a unique glycosylation-dependent binding modality for the M41 spike protein.


Assuntos
Vírus da Bronquite Infecciosa/química , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/química , Substituição de Aminoácidos , Animais , Galinhas/virologia , Glicosilação , Células HEK293 , Humanos , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243124

RESUMO

Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (∼27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection.IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.


Assuntos
Vírus da Bronquite Infecciosa/genética , Virulência/genética , Animais , Galinhas/genética , Códon/genética , Infecções por Coronavirus/virologia , Mudança da Fase de Leitura do Gene Ribossômico , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , Vírus da Bronquite Infecciosa/metabolismo , Fases de Leitura Aberta , Doenças das Aves Domésticas/virologia , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/metabolismo , Transcriptoma/genética , Sequenciamento do Exoma/métodos
7.
Mol Biol Rep ; 47(9): 7161-7168, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32892307

RESUMO

Infectious Bronchitis (IB) is an acute, highly contagious disease associated with respiratory signs in young chickens and reduced egg production and quality in layers. The purpose of this study was to isolate and identify the infectious bronchitis virus in broiler flocks with respiratory diseases in four provinces of Iran. The specimens from forty IB suspected flocks from different regions of Isfahan, East Azerbaijan, Golestan, and Khuzestan provinces were collected, and the trachea, lung, and cecal tonsils were sampled. The samples were inoculated into 9- to 11-day-old embryonated chicken eggs. After collecting the allantoic fluid, RT-PCR was carried out to detect IB viruses. The results showed that IBVs were isolated from 30% of the flocks in these four provinces. The positive samples, according to a partial S1 gene sequence, were more investigated. Comparing nucleotide and amino acid sequences showed that the four isolates had the most similarity to the Pakistani 793/B strain (GI-13 lineage). The three isolates had the most considerable similarity in amino acid and nucleotide sequences to Iraqi and Iranian QX-like viruses (GI-19 lineage). Two isolates had 96 to 98% resemblance to Iranian variant-2 (GI-23 lineage) isolates. One isolate was found to belong to the Massachusetts serotype (GI-1 lineage) having 100% similarity in its amino acid sequence to the Massachusetts serotypes in GenBank. The phylogenetic relationship of the isolates shows complexity and diversity concerning different sequences and geographical regions.


Assuntos
Galinhas/virologia , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Bronquite Infecciosa/metabolismo , Irã (Geográfico) , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia
8.
J Gen Virol ; 99(5): 619-630, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29557770

RESUMO

Enveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARS-CoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus-cell and cell-cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses.


Assuntos
Endossomos/virologia , Vírus da Bronquite Infecciosa/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Animais , Antivirais/farmacologia , Benzamidas/farmacologia , Membrana Celular , Chlorocebus aethiops , Mesilato de Imatinib/farmacologia , Vírus da Bronquite Infecciosa/metabolismo , Pirimidinas/farmacologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral
9.
Virol J ; 15(1): 189, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541588

RESUMO

BACKGROUND: The avian infectious bronchitis virus (IBV) remains a significant source of loss in the poultry industry and early diagnosis is required to prevent the disease from spreading. This study examined the combined use of an ELISA and Western blot (WB) to detect antibodies against the nucleocapsid protein (N) of IBV. The coding sequence for N was amplified by RT-PCR and expressed in Escherichia coli. A soluble recombinant N protein (rN) of approximately 50 kDa was obtained. A total of 389 sera were tested against the rN in ELISA and the results were compared with those of the commercial IDEXX IBV Ab test. ELISA-rN achieved a 90.34% sensitivity and 90.16% specificity. WB confirmed all false negative sera in ELISA-rN or IDEXX test as truly positive. The current study indicate that the combined use of rN in ELISA and WB is a powerful tool for the immunodiagnosis of avian infectious bronchitis. METHODS: Constructed recombinant pAE/n expression vectors were used to transform E. coli BL21(DE3) Star competent cells (Invitrogen). The rN of infectious bronchitis virus was purified by affinity chromatography using HisTrap HP 1 mL columns pre-packed with pre-charged Ni Sepharose in the ÄKTAprime Automated Liquid Chromatography system (GE Healthcare). A total of 389 serum samples from chickens were used to develop and evaluate the ELISA-rN test. To standardize the indirect ELISA development, serum dilutions (1:100, 1:200 and 1:400) and different concentrations of purified rN antigen (50, 100 and 200 ng/well) were tested. Positive and negative sera for IBV were used as controls. The results were compared with those obtained from a commercial kit. Serum samples scored as negative with the commercial kit but as positive with the ELISA-rN were further analysed by Western blot analyses using the rN protein as an antigen. The results of the ELISA-rN were compared to the commercial kit results using receiver-operating characteristics curves, area under the curve, and confidence intervals with the software GraphPad Prism version 6.0 for Windows (GraphPad Software, USA). RESULTS: The expected cDNA fragment of approximately 1240 bp was successfully amplified by PCR using primers designed to select for the coding region of the N protein. The rN was expressed as a soluble protein to avoid the refolding steps and, after purification a yield of 10 mg/L of rN was obtained. The SDS-PAGE results demonstrated the presence of two distinct bands that had a molecular mass of approximately 45 and 50 KDa. Out of 244 sera that scored positive in the commercial ELISA IDEXX IBV Ab Test, 220 were also positive in the ELISA-rN, yielding an ELISA-rN test sensitivity of 90.16%. Out of 145 sera that scored negative in the IDEXX IBV Ab Test, 131 also scored negative in the ELISA-rN, indicating a specificity of 90.34%. Sera that tested negative in the ELISA-rN and positive in the commercial test also reacted with the rN protein in Western blot. CONCLUSIONS: The association between the ELISA and Western blot techniques developed in this study with a subunit of IBV (rN) were able to detect antibodies that the commercial ELISA did not detect suggesting that the ELISA-rN has greater sensitivity.


Assuntos
Anticorpos Antivirais/sangue , Western Blotting/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Bronquite Infecciosa/genética , Proteínas do Nucleocapsídeo/imunologia , Doenças das Aves Domésticas/diagnóstico , Animais , Antígenos Virais/imunologia , Galinhas , Infecções por Coronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus , Diagnóstico Precoce , Escherichia coli/genética , Escherichia coli/metabolismo , Testes Imunológicos/métodos , Vírus da Bronquite Infecciosa/metabolismo , Proteínas do Nucleocapsídeo/genética , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
10.
Arch Virol ; 162(7): 1943-1950, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28316013

RESUMO

Coronavirus papain-like proteases (PLPs) can act as proteases that process virus-encoded large replicase polyproteins and also as deubiquitinating (DUB) enzymes. Like the PLPs of other coronaviruses (CoVs), the avian infectious bronchitis virus (IBV) PLP catalyzes proteolysis of Gly-Gly dipeptide bonds to release mature cleavage products. However, the other functions of the IBV PLP are not well understood. In this study, we found that IBV exhibits strong global DUB activity with significant reductions of the levels of ubiquitin (Ub)-, K48-, and K63-conjugated proteins. The DUB activity exhibited a clear time dependence, with stronger DUB activity in the early stage of viral infection. Furthermore, the IBV replicase-encoded PLP, including the downstream transmembrane (TM) domain, is a DUB enzyme and dramatically reduced the level of Ub-conjugated proteins, while processing both K48- and K63-linked polyubiquitin chains. By contrast, PLP did not cause any reduction of haemagglutinin (HA)-Ub-conjugated proteins. In addition, mutations of the catalytic residues of PLP-TM, Cys1274Ser and His1437Lys, reduced DUB activity against Ub-, K48- and K63- conjugated proteins, indicating that the DUB activity of the PLP-TM wild-type protein is not completely dependent on its catalytic activity. Overall, these results demonstrate that the IBV-encoded PLP-TM functions as a DUB enzyme and suggest that IBV may interfere with the activation of host antiviral signaling pathway by degrading polyubiquitin-associated proteins.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Vírus da Bronquite Infecciosa/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Clonagem Molecular , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/metabolismo , Rim/citologia , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/genética , Ubiquitinação , Proteínas Virais/genética
11.
Arch Virol ; 162(6): 1625-1631, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28224252

RESUMO

Avian infectious bronchitis virus (IBV) is a member of the family Coronaviridae. A binding domain that mediates the attachment of the virus to its receptor has been identified in the S1 protein of prototype IBV strain M41. In this study, we identified this binding domain in a different strain, as well as the cellular proteins that interact with it. First, we expressed the S1N proteins (residues 19-270) of M41 and another isolate, SCZJ3, and compared the binding capacities of recombinant S1N-M41 and S1N-SCZJ3 to host tissues. Protein histochemistry showed that both S1N-M41 and S1N-SCZJ3 could bind to lung and kidney, and that recombinant S1N-SCZJ3 displayed a distinctive staining pattern in the proventriculus. Recombinant S1N-SCZJ3 was then employed to purify binding-associated proteins in lung, kidney, and proventriculus. Using an affinity chromatography assay, two common bands of about 60 kDa and 70 kDa were obtained from the total tissue proteins. These protein bands were identified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) as protein disulfide isomerase (PDI) and heat shock protein 70 (HSP70). Finally, infection of chicken embryo kidney (CEK) cells by SCZJ3 was found to be inhibited by anti-HSP70 but not anti-PDI polyclonal antibody. These data indicate that HSP70 is part of the receptor complex of IBV and might help to understand the mechanism of S-mediated cell entry of IBV.


Assuntos
Proteínas Aviárias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Bronquite Infecciosa/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Linhagem Celular , Galinhas , Vírus da Bronquite Infecciosa/isolamento & purificação , Rim/química , Rim/citologia , Rim/metabolismo , Rim/virologia , Pulmão/química , Pulmão/metabolismo , Doenças das Aves Domésticas/virologia , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/genética , Organismos Livres de Patógenos Específicos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Internalização do Vírus
12.
J Biol Chem ; 290(11): 7160-8, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25609249

RESUMO

Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys(48)- and Lys(63)-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys(101), His(264), and Asp(275) is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the ß-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.


Assuntos
Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/enzimologia , Papaína/química , Poliubiquitina/metabolismo , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Infecções por Coronavirus/enzimologia , Cristalografia por Raios X , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Papaína/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/enzimologia , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Ubiquitina/metabolismo
13.
J Biol Chem ; 290(52): 31138-50, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26546678

RESUMO

Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1-As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics.


Assuntos
Alstonia/química , Antivirais , Infecções por Coronavirus/tratamento farmacológico , Vírus da Dengue , Dengue , Inibidores de Glicosídeo Hidrolases , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Proteínas de Plantas , Alstonia/genética , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Vírus da Bronquite Infecciosa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Estrutura Terciária de Proteína , Células Vero
14.
J Virol ; 89(23): 12047-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26401035

RESUMO

UNLABELLED: The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE: In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system.


Assuntos
Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/metabolismo , Interferon Tipo I/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Primers do DNA/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Vírus da Bronquite Infecciosa/genética , Luciferases , Células Vero
15.
J Virol ; 89(17): 8783-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063435

RESUMO

UNLABELLED: Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that respiratory pathogens of the genus Gammacoronavirus, including chicken infectious bronchitis virus (IBV), require specific α2,3-linked sialylated glycans for attachment and entry. Here, we studied determinants of binding of enterotropic avian gammacoronaviruses, including turkey coronavirus (TCoV), guineafowl coronavirus (GfCoV), and quail coronavirus (QCoV), which are evolutionarily distant from respiratory avian coronaviruses based on the viral attachment protein spike (S1). We profiled the binding of recombinantly expressed S1 proteins of TCoV, GfCoV, and QCoV to tissues of their respective hosts. Protein histochemistry showed that the tissue binding specificity of S1 proteins of turkey, quail, and guineafowl CoVs was limited to intestinal tissues of each particular host, in accordance with the reported pathogenicity of these viruses in vivo. Glycan array analyses revealed that, in contrast to the S1 protein of IBV, S1 proteins of enteric gammacoronaviruses recognize a unique set of nonsialylated type 2 poly-N-acetyl-lactosamines. Lectin histochemistry as well as tissue binding patterns of TCoV S1 further indicated that these complex N-glycans are prominently expressed on the intestinal tract of various avian species. In conclusion, our data demonstrate not only that enteric gammacoronaviruses recognize a novel glycan receptor but also that enterotropism may be correlated with the high specificity of spike proteins for such glycans expressed in the intestines of the avian host. IMPORTANCE: Avian coronaviruses are economically important viruses for the poultry industry. While infectious bronchitis virus (IBV), a respiratory pathogen of chickens, is rather well known, other viruses of the genus Gammacoronavirus, including those causing enteric disease, are hardly studied. In turkey, guineafowl, and quail, coronaviruses have been reported to be the major causative agent of enteric diseases. Specifically, turkey coronavirus outbreaks have been reported in North America, Europe, and Australia for several decades. Recently, a gammacoronavirus was isolated from guineafowl with fulminating disease. To date, it is not clear why these avian coronaviruses are enteropathogenic, whereas other closely related avian coronaviruses like IBV cause respiratory disease. A comprehensive understanding of the tropism and pathogenicity of these viruses explained by their receptor specificity and receptor expression on tissues was therefore needed. Here, we identify a novel glycan receptor for enteric avian coronaviruses, which will further support the development of vaccines.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus do Peru/metabolismo , Receptores Virais/metabolismo , Tropismo Viral/genética , Animais , Galinhas/virologia , Infecções por Coronavirus/virologia , Enterite/virologia , Galactanos/metabolismo , Vírus da Bronquite Infecciosa/metabolismo , Intestinos/virologia , Doenças das Aves Domésticas/virologia , Ligação Proteica/genética , Perus/virologia
16.
Biotechnol Lett ; 38(2): 299-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463372

RESUMO

OBJECTIVE: To assemble infectious bronchitis virus (IBV)-like particles bearing the recombinant spike protein and investigate the humoral immune responses in chickens. RESULTS: IBV virus-like particles (VLPs) were generated through the co-infection with three recombinant baculoviruses separately encoding M, E or the recombinant S genes. The recombinant S protein was sufficiently flexible to retain the ability to self-assemble into VLPs. The size and morphology of the VLPs were similar to authentic IBV particles. In addition, the immunogenicity of IBV VLPs had been investigated. The results demonstrated that the efficiency of the newly generated VLPs was comparable to that of the inactivated M41 viruses in eliciting IBV-specific antibodies and neutralizing antibodies in chickens via subcutaneous inoculation. CONCLUSIONS: This work provides basic information for the mechanism of IBV VLP formation and develops a platform for further designing IBV VLP-based vaccines against IBV or other viruses.


Assuntos
Vírus da Bronquite Infecciosa/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Virossomos/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Baculoviridae , Galinhas , Vetores Genéticos , Vírus da Bronquite Infecciosa/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
17.
J Gen Virol ; 96(12): 3499-3506, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27257648

RESUMO

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus infectious bronchitis virus (IBV). It was thought that coronavirus virions were composed of three major viral structural proteins until investigations of other coronaviruses showed that the virions also include viral non-structural and genus-specific accessory proteins as well as host-cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs, purified by sucrose-gradient ultracentrifugation and analysed by mass spectrometry. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus 35 additional virion-associated host proteins. The virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, while others were found to be orthologous to proteins identified in severe acute respiratory syndrome coronavirus virions and also virions from a number of other RNA and DNA viruses.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Bronquite Infecciosa/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Alantoide/virologia , Animais , Embrião de Galinha , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/ultraestrutura , Espectrometria de Massas , Proteoma , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética , Vírion/genética , Vírion/ultraestrutura
18.
PLoS Pathog ; 8(5): e1002674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570613

RESUMO

The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection.


Assuntos
Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/metabolismo , Via Secretória , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Linhagem Celular Tumoral , Infecções por Coronavirus/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Montagem de Vírus
19.
Virology ; 590: 109944, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141500

RESUMO

Avian coronavirus, known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). Viral nonstructural proteins play important roles in viral replication and immune modulation. IBV NSP9 is a component of the RNA replication complex for viral replication. In this study, we uncovered a function of NSP9 in immune regulation. First, the host proteins that interacted with NSP9 were screened. The immune-related protein signal transducer and activator of transcription 1 (STAT1) was identified and the interaction between NSP9 and STAT1 was further confirmed. Furthermore, IBV replication was inhibited in STAT1-overexpressing cells but inversely affected in STAT1 knock-down cells. Importantly, NSP9 inhibited STAT1 phosphorylation. Finally, the expression of JAK/STAT pathway downstream genes IRF7 and ISG20 was significantly decreased in NSP9-overexpressing cells. These results showed the important role of IBV NSP9 in immunosuppression.


Assuntos
Proteínas Aviárias , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Fator de Transcrição STAT1 , Proteínas não Estruturais Virais , Animais , Galinhas , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/metabolismo , Janus Quinases/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Replicação Viral , Proteínas não Estruturais Virais/metabolismo , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Fator de Transcrição STAT1/metabolismo , Proteínas Aviárias/metabolismo
20.
Avian Dis ; 57(2): 225-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24689178

RESUMO

Infectious bronchitis virus (IBV) is the agent of a highly contagious disease that affects domestic fowl (Gallus gallus). Recent reports showed a high prevalence of one main IBV genotype (Brazil or BR-I) with low genetic diversity in commercial poultry flocks from Brazil. This research analyzed IBV positive poultry flocks from different rearing regions to verify the S1 gene variability and geographic distribution of variant IBV strains in recent years (2010 and 2011). Samples of IBV-positive flocks were obtained from 60 different farms. Forty-nine partial S1 gene sequences were determined and aligned for phylogenetic and amino acid similarity analyses. Eleven samples (22.4%) were similar to Massachusetts vaccine strains (Mass genotype) and 34 samples (69.4%) to the previously characterized Brazilian BR-I genotype. Interestingly, the remaining four samples (8.2%) clustered into a new IBV variant genotype (Brazil-II or BR-II), divergent from the BR-I. A unique nucleotide sequence insertion coding for five amino acid residues was observed in all the Brazilian variant viruses (BR-I and BR-II genotypes). These results show a higher genetic diversity in Brazilian IBV variants than previously described.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Animais , Brasil/epidemiologia , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/microbiologia , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Bronquite Infecciosa/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Aves Domésticas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA