Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(8): 1297-1307.e11, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35325592

RESUMO

Spindle- or lemon-shaped viruses infect archaea in diverse environments. Due to the highly pleomorphic nature of these virions, which can be found with cylindrical tails emanating from the spindle-shaped body, structural studies of these capsids have been challenging. We have determined the atomic structure of the capsid of Sulfolobus monocaudavirus 1, a virus that infects hosts living in nearly boiling acid. A highly hydrophobic protein, likely integrated into the host membrane before the virions assemble, forms 7 strands that slide past each other in both the tails and the spindle body. We observe the discrete steps that occur as the tail tubes expand, and these are due to highly conserved quasiequivalent interactions with neighboring subunits maintained despite significant diameter changes. Our results show how helical assemblies can vary their diameters, becoming nearly spherical to package a larger genome and suggest how all spindle-shaped viruses have evolved from archaeal rod-like viruses.


Assuntos
Vírus de Archaea , Vírus de Archaea/química , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , Vírion/metabolismo
2.
PLoS Biol ; 19(11): e3001442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752450

RESUMO

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.


Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/genética , Evolução Biológica , Variação Genética , Vírus de Archaea/metabolismo , DNA/genética , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Mutação/genética , Filogenia , Células Procarióticas/virologia , Proteínas Virais/genética
3.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32522850

RESUMO

Recent environmental and metagenomic studies have considerably increased the repertoire of archaeal viruses and suggested that they play important roles in nutrient cycling in the biosphere. However, very little is known about how they regulate their life cycles and interact with their hosts. Here, we report that the life cycle of the temperate haloarchaeal virus SNJ1 is controlled by the product ORF4, a small protein belonging to the antitoxin MazE superfamily. We show that ORF4 controls the lysis-lysogeny switch of SNJ1 and mediates superinfection immunity by repression of genomic DNA replication of the superinfecting viruses. Bioinformatic analysis shows that ORF4 is highly conserved in two SNJ1-like proviruses, suggesting that the mechanisms for lysis-lysogeny switch and superinfection immunity are conserved in this group of viruses. As the lysis-lysogeny switch and superinfection immunity of archaeal viruses have been poorly studied, we suggest that SNJ1 could serve as a model system to study these processes.IMPORTANCE Archaeal viruses are important parts of the virosphere. Understanding how they regulate their life cycles and interact with host cells provide crucial insights into their biological functions and the evolutionary histories of viruses. However, mechanistic studies of the life cycle of archaeal viruses are scarce due to a lack of genetic tools and demanding cultivation conditions. Here, we discover that the temperate haloarchaeal virus SNJ1, which infects Natrinema sp. strain J7, employs a lysis-lysogeny switch and establishes superinfection immunity like bacteriophages. We show that its ORF4 is critical for both processes and acts as a repressor of the replication of SNJ1. These results establish ORF4 as a master regulator of SNJ1 life cycle and provides novel insights on the regulation of life cycles by temperate archaeal viruses and on their interactions with host cells.


Assuntos
Vírus de Archaea/genética , Proteínas Imediatamente Precoces/metabolismo , Vírus de Archaea/metabolismo , Bacteriófagos/genética , DNA , Vírus de DNA/genética , Halobacteriaceae/virologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/fisiologia , Lisogenia , Fases de Leitura Aberta/genética , Provírus/genética , Superinfecção/genética
4.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213609

RESUMO

We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of nanometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells.IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.


Assuntos
Vírus de Archaea , Vírus de DNA , DNA Viral , Thermoproteus/virologia , Proteínas Virais , Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Thermoproteus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Extremophiles ; 21(6): 1119-1132, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29019077

RESUMO

Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.


Assuntos
Vírus de Archaea/química , Cromatografia/métodos , Vírus de Archaea/metabolismo , Tolerância ao Sal
6.
Extremophiles ; 21(5): 829-838, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681113

RESUMO

Virus-encoded transcription factors have been pivotal in exploring the molecular mechanisms and regulation of gene expression in bacteria and eukaryotes since the birth of molecular biology, while our understanding of viral transcription in archaea is still in its infancy. Archaeal viruses do not encode their own RNA polymerases (RNAPs) and are consequently entirely dependent on their hosts for gene expression; this is fundamentally different from many bacteriophages and requires alternative regulatory strategies. Archaeal viruses wield a repertoire of proteins to expropriate the host transcription machinery to their own benefit. In this short review we summarise our current understanding of gene-specific and global mechanisms that viruses employ to chiefly downregulate host transcription and enable the efficient and temporal expression of the viral transcriptome. Most of the experimentally characterised archaeo-viral transcription regulators possess either ribbon-helix-helix or Zn-finger motifs that allow them to engage with the DNA in a sequence-specific manner, altering the expression of a specific subset of genes. Recently a novel type of regulator was reported that directly binds to the RNAP and shuts down transcription of both host and viral genes in a global fashion.


Assuntos
Vírus de Archaea/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Vírus de Archaea/metabolismo , Regulação Viral da Expressão Gênica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais/química , Proteínas Virais/genética
7.
Eur Biophys J ; 45(5): 435-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26820561

RESUMO

The archaeal virus His1 isolated from a hypersaline environment infects an extremely halophilic archaeon Haloarcula hispanica. His1 features a lemon-shaped capsid, which is so far found only in archaeal viruses. This unique capsid can withstand high salt concentrations, and can transform into a helical tube, which in turn is resistant to extremely harsh conditions. Hypersaline environments exhibit a wide range of temperatures and pH conditions, which present an extra challenge to their inhabitants. We investigated the influence of pH and temperature on DNA ejection from His1 virus using single-molecule fluorescence experiments. The observed number of ejecting viruses is constant in pH 5 to 9, while the ejection process is suppressed at pH below 5. Similarly, the number of ejections within 15-42 °C shows only a minor increase around 25-37 °C. The maximum velocity of single ejected DNA increases with temperature, in qualitative agreement with the continuum model of dsDNA ejection.


Assuntos
Vírus de Archaea/metabolismo , DNA Viral/metabolismo , Temperatura , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Capsídeo/metabolismo , Genômica , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio
8.
BMC Bioinformatics ; 16: 380, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26554846

RESUMO

BACKGROUND: Viruses are the most abundant and genetically diverse biological entities on earth, yet the repertoire of viral proteins remains poorly explored. As the number of sequenced virus genomes grows into the thousands, and the number of viral proteins into the hundreds of thousands, we report a systematic computational analysis of the point of first-contact between viruses and their hosts, namely viral transmembrane (TM) proteins. RESULTS: The complement of α-helical TM proteins in double-stranded DNA viruses infecting bacteria and archaea reveals large-scale trends that differ from those of their hosts. Viruses typically encode a substantially lower fraction of TM proteins than archaea or bacteria, with the notable exception of viruses with virions containing a lipid component such as a lipid envelope, internal lipid core, or inner membrane vesicle. Compared to bacteriophages, archaeal viruses are substantially enriched in membrane proteins. However, this feature is not always stable throughout the evolution of a viral lineage; for example, TM proteins are not part of the common heritage shared between Lipothrixviridae and Rudiviridae. In contrast to bacteria and archaea, viruses almost completely lack proteins with complicated membrane topologies composed of more than 4 TM segments, with the few detected exceptions being obvious cases of relatively recent horizontal transfer from the host. CONCLUSIONS: The dramatic differences between the membrane proteomes of cells and viruses stem from the fact that viruses do not depend on essential membranes for energy transformation, ion homeostasis, nutrient transport and signaling.


Assuntos
Archaea/metabolismo , Vírus de Archaea/metabolismo , Bactérias/metabolismo , Vírus de DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Vírion/fisiologia , Archaea/virologia , Vírus de Archaea/isolamento & purificação , Bactérias/virologia , Vírus de DNA/isolamento & purificação , Interações Hospedeiro-Patógeno , Proteínas de Membrana/química , Integração Viral
9.
J Theor Biol ; 355: 128-39, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24685889

RESUMO

Recent studies of geothermally heated aquatic ecosystems have found widely divergent viruses with unusual morphotypes. Archaeal viruses isolated from these hot habitats usually have double-stranded DNA genomes, linear or circular, and can infect members of the Archaea domain. In this study, the synonymous codon usage bias (SCUB) and dinucleotide composition in the available complete archaeal virus genome sequences have been investigated. It was found that there is a significant variation in SCUB among different Archaeal virus species, which is mainly determined by the base composition. The outcome of correspondence analysis (COA) and Spearman׳s rank correlation analysis shows that codon usage of selected archaeal virus genes depends mainly on GC richness of genome, and the gene׳s function, albeit with smaller effects, also contributes to codon usage in this virus. Furthermore, this investigation reveals that aromaticity of each protein is also critical in affecting SCUB of these viral genes although it was less important than that of the mutational bias. Especially, mutational pressure may influence SCUB in SIRV1, SIRV2, ARV1, AFV1, and PhiCh1 viruses, whereas translational selection could play a leading role in HRPV1׳s SCUB. These conclusions not only can offer an insight into the codon usage biases of archaeal virus and subsequently the possible relationship between archaeal viruses and their host, but also may help in understanding the evolution of archaeal viruses and their gene classification, and more helpful to explore the origin of life and the evolution of biology.


Assuntos
Vírus de Archaea/genética , Códon/genética , Evolução Molecular , Genoma Viral/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas Virais/genética , Vírus de Archaea/metabolismo , Códon/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Análise de Sequência de DNA/métodos , Proteínas Virais/biossíntese
10.
Extremophiles ; 18(1): 51-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163004

RESUMO

A newly isolated single-tailed fusiform virus, Sulfolobus tengchongensis spindle-shaped virus STSV2, from Hamazui, China, is characterised. It contains a double-stranded modified DNA genome of 76,107 bp and is enveloped by a lipid membrane structure. Virions exhibit a single coat protein that forms oligomers when isolated. STSV2 is related to the single-tailed fusiform virus STSV1 and, more distantly, to the two-tailed bicaudavirus ATV. The virus can be stably cultured over long periods in laboratory strains of Sulfolobus and no evidence was found for cell lysis under different stress conditions. Therefore, it constitutes an excellent model virus for archaeal virus-host studies.


Assuntos
Vírus de Archaea/genética , Proteínas do Capsídeo/genética , Sulfolobus/virologia , Sequência de Aminoácidos , Vírus de Archaea/metabolismo , Vírus de Archaea/ultraestrutura , Sequência de Bases , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Genoma Viral , Dados de Sequência Molecular
11.
Environ Microbiol Rep ; 16(1): e13230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263861

RESUMO

The genome of a putative Nitrosopumilaceae virus with a hypothetical spindle-shaped particle morphology was identified in the Yangshan Harbour metavirome from the East China Sea through protein similarity comparison and structure analysis. This discovery was accompanied by a set of 10 geographically dispersed close relatives found in the environmental virus datasets from typical locations of ammonia-oxidizing archaeon distribution. Its host prediction was supported by iPHoP prediction and protein sequence similarity. The structure of the predicted major capsid protein, together with the overall N-glycosylation site, the transmembrane helices prediction, the hydrophilicity profile, and the docking simulation of the major capsid proteins, indicate that these viruses resemble spindle-shaped viruses. It suggests a similarly assembled structure and, consequently, a possibly spindle-shaped morphology of these newly discovered archaeal viruses.


Assuntos
Archaea , Vírus de Archaea , Archaea/genética , Archaea/metabolismo , Amônia/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Oxirredução , Filogenia
12.
Biophys J ; 104(10): 2264-72, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23708366

RESUMO

The translocation of genetic material from the viral capsid to the cell is an essential part of the viral infection process. Whether the energetics of this process is driven by the energy stored within the confined nucleic acid or cellular processes pull the genome into the cell has been the subject of discussion. However, in vitro studies of genome ejection have been limited to a few head-tailed bacteriophages with a double-stranded DNA genome. Here we describe a DNA release system that operates in an archaeal virus. This virus infects an archaeon Haloarcula hispanica that was isolated from a hypersaline environment. The DNA-ejection velocity of His1, determined by single-molecule experiments, is comparable to that of bacterial viruses. We found that the ejection process is modulated by the external osmotic pressure (polyethylene glycol (PEG)) and by increased ion (Mg(2+) and Na(+)) concentration. The observed ejection was unidirectional, randomly paused, and incomplete, which suggests that cellular processes are required to complete the DNA transfer.


Assuntos
Vírus de Archaea/fisiologia , DNA Viral/metabolismo , Vírus de Archaea/química , Vírus de Archaea/metabolismo , Proteínas do Capsídeo/metabolismo , DNA Viral/química , Haloarcula/virologia , Magnésio/química , Pressão Osmótica , Sódio/química , Internalização do Vírus
13.
Mol Microbiol ; 84(3): 578-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22435790

RESUMO

VP4, the major structural protein of the haloarchaeal pleomorphic virus, HRPV-1, is glycosylated. To define the glycan structure attached to this protein, oligosaccharides released by ß-elimination were analysed by mass spectrometry and nuclear magnetic resonance spectroscopy. Such analyses showed that the major VP4-derived glycan is a pentasaccharide comprising glucose, glucuronic acid, mannose, sulphated glucuronic acid and a terminal 5-N-formyl-legionaminic acid residue. This is the first observation of legionaminic acid, a sialic acid-like sugar, in an archaeal-derived glycan structure. The importance of this residue for viral infection was demonstrated upon incubation with N-acetylneuraminic acid, a similar monosaccharide. Such treatment reduced progeny virus production by half 4 h post infection. LC-ESI/MS analysis confirmed the presence of pentasaccharide precursors on two different VP4-derived peptides bearing the N-glycosylation signal, NTT. The same sites modified by the native host, Halorubrum sp. strain PV6, were also recognized by the Haloferax volcanii N-glycosylation apparatus, as determined by LC-ESI/MS of heterologously expressed VP4. Here, however, the N-linked pentasaccharide was the same as shown to decorate the S-layer glycoprotein in this species. Hence, N-glycosylation of the haloarchaeal viral protein, VP4, is host-specific. These results thus present additional examples of archaeal N-glycosylation diversity and show the ability of Archaea to modify heterologously expressed proteins.


Assuntos
Vírus de Archaea/metabolismo , Haloferax volcanii/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Vírus de Archaea/química , Vírus de Archaea/genética , Glicosilação , Haloferax volcanii/virologia , Espectrometria de Massas , Dados de Sequência Molecular , Mapeamento de Peptídeos , Ácidos Siálicos/análise , Proteínas Virais/química , Proteínas Virais/genética
14.
Environ Microbiol ; 15(6): 1674-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23163639

RESUMO

Extremophiles are found in all three domains of cellular life. However, hyperthermic and hypersaline environments are typically dominated by archaeal cells which also hold the records for the highest growth temperature and are able to grow even at saturated salinity. Hypersaline environments are rich of virus-like particles, and spindle-shaped virions resembling lemons are one of the most abundant virus morphotypes. Spindle-shaped viruses are archaea-specific as all the about 15 such virus isolates infect either hyperthermophilic or halophilic archaea. In the present work, we studied spindle-shaped virus His1 infecting an extremely halophilic euryarchaeon, Haloarcula hispanica. We demonstrate that His1 tolerates a variety of salinities, even lower than that of seawater. The detailed analysis of the structural constituents showed that the His1 virion is composed of only one major and a few minor structural proteins. There is no lipid bilayer in the His1 virion but the major structural protein VP21 is most likely lipid modified. VP21 forms the virion capsid, and the lipid modification probably enables hydrophobic interactions leading to the flexible nature of the virion. Furthermore, we propose that euryarchaeal virus His1 may be related to crenarchaeal fuselloviruses, and that the short-tailed spindle-shaped viruses could form a structure-based viral lineage.


Assuntos
Vírus de Archaea/fisiologia , Proteínas do Capsídeo/metabolismo , Vírion/metabolismo , Vírus de Archaea/química , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Genoma Viral , Haloarcula/virologia , Lipídeos/química , Salinidade , Vírion/química , Vírion/genética
15.
Extremophiles ; 17(6): 881-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24085522

RESUMO

The genus Sulfolobus includes microorganisms belonging to the domain Archaea, sub-kingdom Crenarchaeota, living in geographically distant acidic hot springs. Their adaptation to such particular habitats requires finely regulated mechanisms of gene expression, among which, those modulated by sequence-specific transcription factors (TFs) play a key role. In this review, we summarize the current knowledge on the repertoires of TFs found in Sulfolobus spp. and their viruses, focusing on the description of their DNA-binding domains and their structure-function relationship.


Assuntos
Proteínas Arqueais/química , Vírus de Archaea/metabolismo , Sulfolobus/metabolismo , Fatores de Transcrição/química , Proteínas Virais/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Vírus de Archaea/patogenicidade , Dados de Sequência Molecular , Sulfolobus/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo
16.
RNA Biol ; 10(5): 803-16, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470522

RESUMO

The complete genome sequences of archaeal tailed viruses are currently highly underrepresented in sequence databases. Here, we report the genomic sequences of 10 new tailed viruses infecting different haloarchaeal hosts. Among these, only two viral genomes are closely related to each other and to previously described haloviruses HF1 and HF2. The approximately 760 kb of new genomic sequences in total shows no matches to CRISPR/Cas spacer sequences in haloarchaeal host genomes. Despite their high divergence, we were able to identify virion structural and assembly genes as well as genes coding for DNA and RNA metabolic functions. Interestingly, we identified many genes and genomic features that are shared with tailed bacteriophages, consistent with the hypothesis that haloarchaeal and bacterial tailed viruses share common ancestry, and that a viral lineage containing archaeal viruses, bacteriophages and eukaryotic viruses predates the division of the three major domains of non-viral life. However, as in tailed viruses in general and in haloarchaeal tailed viruses in particular, there are still a considerable number of predicted genes of unknown function.


Assuntos
Archaea/virologia , Vírus de Archaea/genética , Genoma Viral , Sequência de Aminoácidos , Archaea/genética , Vírus de Archaea/metabolismo , Bacteriófagos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Evolução Molecular , Genômica , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
17.
RNA Biol ; 10(5): 886-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23392292

RESUMO

Viruses that infect bacteria are the most abundant biological agents on the planet and bacteria have evolved diverse defense mechanisms to combat these genetic parasites. One of these bacterial defense systems relies on a repetitive locus, referred to as a CRISPR (clusters of regularly interspaced short palindromic repeats). Bacteria and archaea acquire resistance to invading viruses and plasmids by integrating short fragments of foreign nucleic acids at one end of the CRISPR locus. CRISPR loci are transcribed and the long primary CRISPR transcript is processed into a library of small RNAs that guide the immune system to invading nucleic acids, which are subsequently degraded by dedicated nucleases. However, the development of CRISPR-mediated immune systems has not eradicated phages, suggesting that viruses have evolved mechanisms to subvert CRISPR-mediated protection. Recently, Bondy-Denomy and colleagues discovered several phage-encoded anti-CRISPR proteins that offer new insight into the ongoing molecular arms race between viral parasites and the immune systems of their hosts.


Assuntos
Archaea/genética , Archaea/virologia , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Virais/genética , Proteínas Virais/fisiologia , Imunidade Adaptativa , Archaea/imunologia , Vírus de Archaea/genética , Vírus de Archaea/imunologia , Vírus de Archaea/metabolismo , Bactérias/genética , Bactérias/imunologia , Farmacorresistência Bacteriana , Plasmídeos , RNA Arqueal/genética , RNA Bacteriano/genética
18.
Bioessays ; 33(4): 248-54, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21328413

RESUMO

Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control.


Assuntos
Archaea/patogenicidade , Doenças Transmissíveis/microbiologia , Archaea/genética , Archaea/virologia , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Evolução Biológica , Transferência Genética Horizontal , Genes Arqueais , Genes Bacterianos , Humanos , Filogenia , Receptores Virais/metabolismo , Virulência , Fatores de Virulência/genética
19.
Cell Host Microbe ; 31(11): 1837-1849.e5, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909049

RESUMO

Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.


Assuntos
Vírus de Archaea , Proteínas Associadas a CRISPR , Vírus de Archaea/metabolismo , Proteínas Virais/genética , Sistemas CRISPR-Cas , Archaea/metabolismo , Proteínas Associadas a CRISPR/genética
20.
J Proteome Res ; 11(2): 1420-32, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22217245

RESUMO

Where there is life, there are viruses. The impact of viruses on evolution, global nutrient cycling, and disease has driven research on their cellular and molecular biology. Knowledge exists for a wide range of viruses; however, a major exception are viruses with archaeal hosts. Archaeal virus-host systems are of great interest because they have similarities to both eukaryotic and bacterial systems and often live in extreme environments. Here we report the first proteomics-based experiments on archaeal host response to viral infection. Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2 was studied using 1D and 2D differential gel electrophoresis (DIGE) to measure abundance and redox changes. Cysteine reactivity was measured using novel fluorescent zwitterionic chemical probes that, together with abundance changes, suggest that virus and host are both vying for control of redox status in the cells. Proteins from nearly 50% of the predicted viral open reading frames were found along with a new STIV protein with a homologue in STIV2. This study provides insight to features of viral replication novel to the archaea, makes strong connections to well-described mechanisms used by eukaryotic viruses such as ESCRT-III mediated transport, and emphasizes the complementary nature of different omics approaches.


Assuntos
Proteínas Arqueais/análise , Vírus de Archaea/metabolismo , Proteômica/métodos , Sulfolobus solfataricus/metabolismo , Sulfolobus solfataricus/virologia , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Vírus de Archaea/genética , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Alinhamento de Sequência , Sulfolobus solfataricus/química , Espectrometria de Massas em Tandem , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA