Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.326
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
2.
Anal Biochem ; 691: 115533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38642818

RESUMO

For irreversible denaturation transitions such as those exhibited by monoclonal antibodies, differential scanning calorimetry provides the denaturation temperature, Tm, the rate of denaturation at Tm, and the activation energy at Tm. These three quantities are essential but not sufficient for an accurate extrapolation of the rate of denaturation to temperatures of 25 °C and below. We have observed that the activation energy is not constant but temperature dependent due to the existence of an activation heat capacity, Cp,a. It is shown in this paper that a model that incorporates Cp,a is able to account for previous observations like, for example, that increasing the Tm does not always improve the stability at low temperatures; that some antibodies exhibit lower stabilities at 5 °C than at 25 °C; or that low temperature stabilities do not follow the rank order derived from Tm values. Most importantly, the activation heat capacity model is able to reproduce time dependent stabilities measured by size exclusion chromatography at low temperatures.


Assuntos
Anticorpos Monoclonais , Varredura Diferencial de Calorimetria , Desnaturação Proteica , Anticorpos Monoclonais/química , Temperatura Baixa , Temperatura , Estabilidade Proteica , Termodinâmica
3.
Immunity ; 43(6): 1053-63, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682982

RESUMO

The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.


Assuntos
Afinidade de Anticorpos/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Antígenos Virais/química , Antígenos Virais/imunologia , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Epitopos/química , Células HEK293 , Anticorpos Anti-HIV/química , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Polissacarídeos/imunologia , Hipermutação Somática de Imunoglobulina , Proteínas do Envelope Viral/imunologia , Difração de Raios X , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
4.
Mol Pharm ; 21(3): 1272-1284, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38361428

RESUMO

Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.


Assuntos
Rifampina , Trometamina , Composição de Medicamentos , Solubilidade , Água , Modelos Teóricos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Difração de Raios X
5.
Mol Pharm ; 21(1): 76-86, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051598

RESUMO

Drugs have been classified as fast, moderate, and poor crystallizers based on their inherent solid-state crystallization tendency. Differential scanning calorimetry-based heat-cool-heat protocol serves as a valuable tool to define the solid-state crystallization tendency. This classification helps in the development of strategies for stabilizing amorphous drugs. However, microscopic characteristics of the samples were generally overlooked during these experiments. In the present study, we evaluated the influence of microscopic cracks on the crystallization tendency of a poorly water-soluble model drug, celecoxib. Cracks developed in the temperature range of 0-10 °C during the cooling cycle triggered the subsequent crystallization of the amorphous phase. Nanoindentation study suggested minimal differences in mechanical properties between samples, although the cracked sample showed relatively inhomogeneous mechanical properties. Nuclei nourishment experiments suggested crack-assisted nucleation, which was supported by Raman data that revealed subtle changes in intermolecular interactions between cracked and uncracked samples. Celecoxib has been generally classified as class II, i.e., a drug with moderate crystallization tendency. Interestingly, classification of amorphous celecoxib may change depending on the presence or absence of cracks in the amorphous sample. Hence, subtle events such as microscopic cracks should be given due consideration while defining the solid-state crystallization tendency of drugs.


Assuntos
Água , Cristalização , Celecoxib/química , Estabilidade de Medicamentos , Transição de Fase , Varredura Diferencial de Calorimetria , Solubilidade
6.
Mol Pharm ; 21(4): 1794-1803, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401048

RESUMO

Although nucleation is considered the first step in the crystallization of glass materials, the structure and properties of the nuclei are not understood well. Influence of nucleation on the structure and dynamics of celecoxib glass was evaluated in this study. The nuclei for Form III were induced by annealing the glass at freezing temperature, and their impact on the relaxation behavior was investigated using thermal analysis and broadband dielectric spectroscopy to find accelerated α relaxation and suppressed ß relaxation. In addition, observed after nucleation was a decrease in cooperativity of the molecular motion, presumably because of the appearance of void spaces in the glass structure. During long-term isothermal crystallization studies, crystal growth to Form III was accelerated in the presence of the nuclei, whereas this effect was less remarkable when a different crystal form dominated the crystallization behavior. These observations should provide more detailed insights into the nucleation mechanism and impact of nucleation on molecular dynamics including physical stability of pharmaceutical glasses. In addition, discussed is the remarkable acceleration of the crystallization rate of the celecoxib glass just below its Tg, which could be understood by diffusionless crystal growth.


Assuntos
Temperatura Baixa , Simulação de Dinâmica Molecular , Celecoxib , Cristalização/métodos , Vidro/química , Varredura Diferencial de Calorimetria
7.
Mol Pharm ; 21(5): 2315-2326, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38644570

RESUMO

The main purpose of our studies is to demonstrate that commercially available mesoporous silica (MS) can be used to control the physical state of aripiprazole (ARP). The investigations performed utilizing differential scanning calorimetry and broadband dielectric spectroscopy reveal that silica can play different roles depending on its concentration in the system with amorphous ARP. At low MS content, it activates recrystallization of the active pharmaceutical ingredient and supports forming the III polymorphic form of ARP. At intermediate MS content (between ca. 27 and 65 wt %), MS works as a recrystallization inhibitor of ARP. At these concentrations, the formation of III polymorphic form is no longer favorable; therefore, it is possible to use this additive to obtain ARP in either IV or X polymorphic form. At the same time, employing MS in concentrations >65 wt % amorphous form of ARP with high physical stability can be obtained. Finally, regardless of the polymorphic form it crystallizes into, each composite is characterized by the same temperature dependence of relaxation times in the supercooled and glassy states.


Assuntos
Aripiprazol , Varredura Diferencial de Calorimetria , Cristalização , Dióxido de Silício , Aripiprazol/química , Dióxido de Silício/química , Porosidade , Espectroscopia Dielétrica , Difração de Raios X
8.
Mol Pharm ; 21(4): 1768-1776, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381374

RESUMO

A better molecular understanding of the temperature-triggered drug release from lysolipid-based thermosensitive liposomes (LTSLs) is needed to overcome the recent setbacks in developing this important drug delivery system. Enhanced drug release was previously rationalized in terms of detergent-like effects of the lysolipid monostearyl lysophosphatidylcholine (MSPC), stabilizing local membrane defects upon LTSL lipid melting. This is highly surprising and here referred to as the 'lysolipid paradox,' because detergents usually induce the opposite effect─they cause leakage upon freezing, not melting. Here, we aim at better answers to (i) why lysolipid does not compromise drug retention upon storage of LTSLs in the gel phase, (ii) how lysolipids can enhance drug release from LTSLs upon lipid melting, and (iii) why LTSLs typically anneal after some time so that not all drug gets released. To this end, we studied the phase transitions of mixtures of dipalmitoylphosphatidylcholine (DPPC) and MSPC by a combination of differential scanning and pressure perturbation calorimetry and identified the phase structures with small- and wide-angle X-ray scattering (SAXS and WAXS). The key result is that LTSLs, which contain the standard amount of 10 mol % MSPC, are at a eutectic point when they release their cargo upon melting at about 41 °C. The eutectic present below 41 °C consists of a MSPC-depleted gel phase as well as small domains of a hydrocarbon chain interdigitated gel phase containing some 30 mol % MSPC. In these interdigitated domains, the lysolipid is stored safely without compromising membrane integrity. At the eutectic temperature, both the MSPC-depleted bilayer and interdigitated MSPC-rich domains melt at once to fluid bilayers, respectively. Intact, fluid membranes tolerate much less MSPC than interdigitated domains─where the latter have melted, the high local MSPC content causes transient pores. These pores allow for fast drug release. However, these pores disappear, and the membrane seals again as the MSPC distributes more evenly over the membrane so that its local concentration decreases below the pore-stabilizing threshold. We provide a pseudobinary phase diagram of the DPPC-MSPC system and structural and volumetric data for the interdigitated phase.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Varredura Diferencial de Calorimetria , Difração de Raios X , 1,2-Dipalmitoilfosfatidilcolina/química
9.
Mol Pharm ; 21(6): 3027-3039, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38755753

RESUMO

This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.


Assuntos
Varredura Diferencial de Calorimetria , Itraconazol , Cristais Líquidos , Povidona , Solubilidade , Difração de Raios X , Itraconazol/química , Cristais Líquidos/química , Povidona/química , Varredura Diferencial de Calorimetria/métodos , Difração de Raios X/métodos , Polímeros/química , Antifúngicos/química , Composição de Medicamentos/métodos , Cristalização , Química Farmacêutica/métodos
10.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
11.
Mol Pharm ; 21(6): 2838-2853, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38662637

RESUMO

Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.


Assuntos
Levofloxacino , Difração de Raios X , Levofloxacino/química , Difração de Raios X/métodos , Pós/química , Cinética , Composição de Medicamentos/métodos , Antibacterianos/química , Varredura Diferencial de Calorimetria/métodos , Cristalização , Química Farmacêutica/métodos
12.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38758116

RESUMO

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Assuntos
Estabilidade de Medicamentos , Excipientes , Liofilização , Polímeros , Povidona , Temperatura de Transição , Trealose , Liofilização/métodos , Povidona/química , Trealose/química , Excipientes/química , Polímeros/química , Sacarose/química , Açúcares/química , Ligação de Hidrogênio , Armazenamento de Medicamentos , Química Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Umidade , Pirrolidinas/química , Compostos de Vinila/química
13.
Langmuir ; 40(15): 7883-7895, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38587263

RESUMO

N-Acylated amino acids and neurotransmitters in mammals exert significant biological effects on the nervous system, immune responses, and vasculature. N-Acyl derivatives of γ-aminobutyric acid (N-acyl GABA), which belong to both classes mentioned above, are prominent among them. In this work, a homologous series of N-acyl GABAs bearing saturated N-acyl chains (C8-C18) have been synthesized and characterized with respect to self-assembly, thermotropic phase behavior, and supramolecular organization. Differential scanning calorimetric studies revealed that the transition enthalpies and entropies of N-acyl GABAs are linearly dependent on the acyl chain length. The crystal structure of N-tridecanoyl GABA showed that the molecules are packed in bilayers with the acyl chains aligned parallel to the bilayer normal and that the carboxyl groups from opposite layers associate to form dimeric structures involving strong O-H···O hydrogen bonds. In addition, N-H···O and C-H···O hydrogen bonds between amide moieties of adjacent molecules within each layer stabilize the molecular packing. Powder X-ray diffraction studies showed odd-even alternation in the d spacings, suggesting that the odd chain and even chain compounds pack differently. Equimolar mixtures of N-palmitoyl GABA and dipalmitoylphosphatidylcholine (DPPC) were found to form stable unilamellar vesicles with diameters of ∼300-340 nm, which could encapsulate doxorubicin, an anticancer drug, with higher efficiency and better release characteristics than DPPC liposomes at physiologically relevant pH. These liposomes exhibit faster release of doxorubicin at acidic pH (<7.0), indicating their potential utility as drug carriers in cancer chemotherapy.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipossomos , Animais , 1,2-Dipalmitoilfosfatidilcolina/química , Termodinâmica , Doxorrubicina , Ácido gama-Aminobutírico , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Mamíferos
14.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170593

RESUMO

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Assuntos
Celobiose , Cristais Líquidos , Glicolipídeos/química , Cristais Líquidos/química , Varredura Diferencial de Calorimetria , Microscopia
15.
Ann Bot ; 133(7): 941-952, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38365444

RESUMO

BACKGROUND AND AIMS: Orchid seeds are reputed to be short lived in dry, cold storage conditions, potentially limiting the use of conventional seed banks for long-term ex situ conservation. This work explores whether Cattleya seeds are long lived or not during conventional storage (predried to ~12 % relative humidity, then stored at -18 °C). METHODS: We explored the possible interaction of factors influencing seed lifespan in eight species of the genus Cattleya using physiological (germination and vigour), biochemical (gas chromatography), biophysical (differential scanning calorimetry) and morphometric methods. Seeds were desiccated to ~3 % moisture content and stored at -18 °C for more than a decade, and seed quality was measured via three in vitro germination techniques. Tetrazolium staining was also used to monitor seed viability during storage. The morphometric and germination data were subjected to ANOVA and cluster analysis, and seed lifespan was subjected to probit analysis. KEY RESULTS: Seeds of all Cattleya species were found to be desiccation tolerant, with predicted storage lifespans (P50y) of ~30 years for six species and much longer for two species. Cluster analysis showed that the three species with the longest-lived seeds had smaller (9-11 %) airspaces around the embryo. The post-storage germination method impacted the quality assessment; seeds equilibrated at room temperature for 24 h or in 10 % sucrose solution had improved germination, particularly for the seeds with the smallest embryos. Chromatography revealed that the seeds of all eight species were rich in linoleic acid, and differential scanning calorimetry identified a peak that might be auxiliary to selecting long-lived seeds. CONCLUSIONS: These findings show that not all orchids produce seeds that are short lived, and our trait analyses might help to strengthen prediction of seed longevity in diverse orchid species.


Assuntos
Germinação , Orchidaceae , Banco de Sementes , Sementes , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Orchidaceae/fisiologia , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/anatomia & histologia , Germinação/fisiologia , Dessecação , Varredura Diferencial de Calorimetria
16.
Physiol Plant ; 176(3): e14368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837358

RESUMO

Biobased waste utilization is an intriguing area of research and an ecologically conscious approach. Plant-based materials can be used to render cellulose, which is an eco-friendly material that can be used in numerous aspects. In the current investigation, cellulose was extracted from the leaves of the Vachellia nilotica plant via acid hydrolysis. The application of this research is specifically directed toward the utilization of undesirable plant sources. To validate the extracted cellulose, FT-IR spectroscopy was applied. The cellulose was measured to have a density of 1.234 g/cm3. The crystallinity index (58.93%) and crystallinity size (11.56 nm) of cellulose are evaluated using X-ray diffraction spectroscopy analysis. The highest degradation temperature (320.8°C) was observed using thermogravimetry and differential scanning calorimetry curve analysis. The analysis of particle size was conducted utilizing images captured by scanning electron microscopy. Particle size of less than 30 µm was found and they exhibit non-uniform orientation. Additionally, atomic force microscopy analysis shows an improved average surface roughness (Ra), which increases the possibility of using extracted cellulose as reinforcement in biofilms.


Assuntos
Biomassa , Celulose , Folhas de Planta , Difração de Raios X , Celulose/química , Celulose/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Microscopia de Força Atômica , Tamanho da Partícula , Hidrólise
17.
Macromol Rapid Commun ; 45(11): e2400057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471478

RESUMO

Bis-carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED-2003 Jeffamine, 4,4'-methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4-butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segment Tg, melting transition, and hard segment Tg, while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase-separated regimes, revealing a nanoscale rod-like assembly of HS. Small-angle X-ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate-derived analogues. This work demonstrates nanophase separation in BCI-derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.


Assuntos
Poliuretanos , Poliuretanos/química , Poliuretanos/síntese química , Polímeros/química , Polímeros/síntese química , Imidazóis/química , Estrutura Molecular , Polimerização , Varredura Diferencial de Calorimetria
18.
Biosci Biotechnol Biochem ; 88(6): 601-607, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569654

RESUMO

Lipoic acid trisulfide, a sulfane sulfur-containing trisulfide of α-lipoic acid, holds promise in pharmaceuticals, yet knowledge gaps persist regarding its synthesis, properties, and stability. Here, we synthesized the lipoic acid trisulfide with a purity exceeding 99% from α-lipoic acid on a gram scale and obtained novel ß-cyclodextrin clathrates (84%-95% yield). Differential scanning calorimetry confirmed the inclusion of lipoic acid trisulfide in ß-cyclodextrins. The resulting ß-cyclodextrin clathrates exhibited significant improvements in water solubility and thermal stability. This pioneering study demonstrated a novel approach to the practical preparation of trisulfide and its ß-cyclodextrin clathrates as active ingredients, paving the way for clinical development.


Assuntos
Solubilidade , Ácido Tióctico , beta-Ciclodextrinas , Ácido Tióctico/química , beta-Ciclodextrinas/química , Sulfetos/química , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Água/química
19.
Chem Pharm Bull (Tokyo) ; 72(2): 190-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369345

RESUMO

A co-amorphous model drug was prepared by the spray-drying (SD) of probucol (PC) and atorvastatin calcium trihydrate salt (ATO) as low water solubility and co-former components, respectively. The physicochemical properties of the prepared samples were characterized by powder X-ray diffraction (PXRD) analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and dissolution tests. Stability tests were also conducted under a stress environment of 40 °C and 75% relative humidity. The results of PXRD measurements and thermal analysis suggested that PC and ATO form a co-amorphous system by SD. Thermal analysis also indicated an endothermic peak that followed an exotherm in amorphous PC and a physical mixture (PM) of amorphous PC and ATO; however, no endothermic peak was detected in the co-amorphous system. The dissolution profiles for PC in the co-amorphous sample composed of PC and ATO were improved compared to those for raw PC crystals or the PM. Stability tests indicated that the co-amorphous material formed by PC and ATO can be stored for 35 d without crystallization, whereas amorphous PC became crystallized within a day. Therefore, co-amorphization of PC and ATO prepared by SD is considered to be a useful method to improve the solubility of PC in water.


Assuntos
Probucol , Água , Atorvastatina , Probucol/química , Estabilidade de Medicamentos , Cristalografia por Raios X , Difração de Raios X , Água/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
20.
Drug Dev Ind Pharm ; 50(4): 297-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385210

RESUMO

OBJECTIVE: This study aimed to investigate the impact of physical solid dispersions of spray-dried glibenclamide (SG) on the surface of microcrystalline cellulose (MC) and mannitol (M) surfaces, as well as their combination with phosphatidylcholine (P), on enhancing the dissolution rate of glibenclamide (G). METHODS: Solid dispersions were prepared using varying proportions of 1:1, 1:4, and 1:10 for SG on the surface of MC (SGA) and M (SGM), and then combined with P, in a proportion of 1:4:0.02 using spray drying. The particle size, specific surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dissolution rate of SGA and SGM were characterized. RESULTS: SEM analysis revealed successful adhesion of SG onto the surface of the carrier surfaces. XRD showed reduced crystalline characteristic peaks for SGA, while SGM exhibited a sharp peaks pattern. Both SGA and SGM demonstrated higher dissolution rates compared to SG and G alone. Furthermore, the dissolution rates of the solid dispersions of SG, MC and P (SGAP), and SG, M, and P (SGMP) were sequentially higher than that of SGA and SGM. CONCLUSIONS: The study suggests that physical solid dispersions of SG on MC and M, along with their combination with P, can effectively enhance the dissolution rate of G. These findings may be valuable in developing of oral solid drug dosage forms utilizing SGA, SGM, SGAP, and SGMP.


Assuntos
Celulose , Glibureto , Manitol , Fosfatidilcolinas , Solubilidade , Difração de Raios X , Varredura Diferencial de Calorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA