Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(1): 100483, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101620

RESUMO

Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Metabolismo dos Lipídeos/genética , beta 2-Glicoproteína I/genética , beta 2-Glicoproteína I/metabolismo , beta 2-Glicoproteína I/farmacologia , Regulação para Baixo , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo
2.
Adv Sci (Weinh) ; 11(24): e2309140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639399

RESUMO

Antiphospholipid syndrome (APS) is characterized by thrombus formation, poor pregnancy outcomes, and a proinflammatory response. H3K4me3-related monocytes activation are key regulators of APS pathogenesis. Therefore, H3K4me3 CUT&Tag and ATAC-seq are performed to examine the epigenetic profiles. The results indicate that the H3K4me3 signal and chromatin accessibility at the FOXJ2 promoter are enhanced in an in vitro monocyte model by stimulation with ß2GPI/anti-ß2GPI, which mimics APS, and decreases after OICR-9429 administration. Furthermore, FOXJ2 is highly expressed in patients with primary APS (PAPS) and is the highest in patients with triple-positive antiphospholipid antibodies (aPLs). Mechanistically, FOXJ2 directly binds to the SLAMF8 promoter and activates SLAMF8 transcription. SLAMF8 further interacts with TREM1 to stimulate TLR4/NF-κB signaling and prohibit autophagy. Knockdown of FOXJ2, SLAMF8, or TREM1 blocks TLR4/NF-κB and provokes autophagy, subsequently inhibiting the release of inflammatory and thrombotic indicators. A mouse model of vascular APS is established via ß2GPI intraperitoneal injection, and the results suggest that OICR-9429 administration attenuates the inflammatory response and thrombus formation by inactivating FOXJ2/SLAMF8/TREM1 signaling. These findings highlight the overexpression of H3K4me3-mediated FOXJ2 in APS, which consequently accelerates APS pathogenesis by triggering inflammation and thrombosis via boosting the SLAMF8/TREM1 axis. Therefore, OICR-9429 is a promising candidate drug for APS therapy.


Assuntos
Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Inflamação , Monócitos , Trombose , Animais , Feminino , Humanos , Camundongos , Anticorpos Antifosfolipídeos/metabolismo , Síndrome Antifosfolipídica/metabolismo , Síndrome Antifosfolipídica/genética , beta 2-Glicoproteína I/metabolismo , beta 2-Glicoproteína I/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Histonas/metabolismo , Histonas/genética , Inflamação/metabolismo , Inflamação/genética , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Trombose/metabolismo , Trombose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA