Your browser doesn't support javascript.
loading
4-Phenyl-1, 3-thiazole-2-amines as scaffolds for new antileishmanial agents
Rodrigues, Carina Agostinho; Santos, Paloma Freire dos; Costa, Marcela Oliveira Legramanti da; Pavani, Thais Fernanda Amorim; Xander, Patrícia; Geraldo, Mariana Marques; Mengarda, Ana; Moraes, Josué de; Rando, Daniela Gonçales Galasse.
Afiliação
  • Rodrigues, Carina Agostinho; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Santos, Paloma Freire dos; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Costa, Marcela Oliveira Legramanti da; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Pavani, Thais Fernanda Amorim; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Xander, Patrícia; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Geraldo, Mariana Marques; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
  • Mengarda, Ana; University of Guarulhos. Research Group of Neglected Diseases. Guarulhos. BR
  • Moraes, Josué de; University of Guarulhos. Research Group of Neglected Diseases. Guarulhos. BR
  • Rando, Daniela Gonçales Galasse; Federal University of São Paulo. Institute of Environmental, Chemical and Pharmaceutical Sciences. Department of Pharmaceutical Sciences. Diadema. BR
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;24: 26, 2018. tab, graf, ilus
Article em En | LILACS, VETINDEX | ID: biblio-976027
Biblioteca responsável: BR68.1
ABSTRACT
There is still a need for new alternatives in pharmacological therapy for neglected diseases, as the drugs available show high toxicity and parenteral administration. That is the case for the treatment of leishmaniasis, particularly to the cutaneous clinical form of the disease. In this study, we present the synthesis and biological screening of eight 4-phenyl-1,3-thiazol-2-amines assayed against Leishmania amazonensis. Herein we propose that these compounds are good starting points for the search of new antileishmanial drugs by demonstrating some of the structural aspects which could interfere with the observed activity, as well as suggesting potential macromolecular targets.

Methods:

The compounds were easily synthesized by the methodology of Hantzsch and Weber, had their purities determined by Gas Chromatography-Mass spectrometry and assayed against the promastigote forms of Leishmania amazonensis as well as against two white cell lines (L929 and THP-1) and the monkey's kidney Vero cells. PrestoBlue® and MTT viability assays were the methodologies applied to measure the antileishmanial and cytotoxic activities, respectively. A molecular modeling target fishing study was performed aiming to propose potential macromolecular targets which could explain the observed biological behavior.

Results:

Four out of the eight compounds tested exhibited important anti-promastigote activity associated with good selectivity indexes when considering Vero cells. For the most promising compound, compound 6, IC50 against promastigotes was 20.78 while SI was 5.69. Compounds 3 (IC50 46.63 µM; SI 26.11) and 4 (IC50 53.12 µM; SI 4.80) also presented important biological behavior. A target fishing study suggested that S-methyl-5-thioadenosine phosphorylase is a potential target to these compounds, which could be explored to enhance activity and decrease the potential toxic side effects.

Conclusions:

This study shows that 4-phenyl-1,3-thiazol-2-amines could be good scaffolds to the development of new antileishmanial agents. The S-methyl-5-thioadenosine phosphorylase could be one of the macromolecular targets involved in the action.(AU)
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS / VETINDEX Assunto principal: Tiazóis / Leishmaniose / Aminas / Leishmania Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS / VETINDEX Assunto principal: Tiazóis / Leishmaniose / Aminas / Leishmania Idioma: En Ano de publicação: 2018 Tipo de documento: Article