Your browser doesn't support javascript.
loading
Selection in several environments by BLP as an alternative to pooled anova in crop breeding / Seleção em diversos ambientes pelo BLP como alternativa à anava conjunta
Bueno Filho, Júlio Sílvio de Sousa; Vencovsky, Roland.
Afiliação
  • Bueno Filho, Júlio Sílvio de Sousa; Universidade Federal de Lavras. Departamento de Ciências Exatas. Lavras. BR
  • Vencovsky, Roland; Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. Departamento de Genética. Piracicaba. BR
Ciênc. agrotec., (Impr.) ; 33(5): 1342-1350, set.-out. 2009. tab
Article em En | LILACS | ID: lil-531549
Biblioteca responsável: BR1.1
ABSTRACT
Plant breeders often carry out genetic trials in balanced designs. That is not always the case with animal genetic trials. In plant breeding is usual to select progenies tested in several environments by pooled analysis of variance (ANOVA). This procedure is based on the global averages for each family, although genetic values of progenies are better viewed as random effects. Thus, the appropriate form of analysis is more likely to follow the mixed models approach to progeny tests, which became a common practice in animal breeding. Best Linear Unbiased Prediction (BLUP) is not a "method" but a feature of mixed model estimators (predictors) of random effects and may be derived in so many ways that it has the potential of unifying the statistical theory of linear models (Robinson, 1991). When estimates of fixed effects are present is possible to combine information from several different tests by simplifying BLUP, in these situations BLP also has unbiased properties and this lead to BLUP from straightforward heuristics. In this paper some advantages of BLP applied to plant breeding are discussed. Our focus is on how to deal with estimates of progeny means and variances from many environments to work out predictions that have "best" properties (minimum variance linear combinations of progenies' averages). A practical rule for relative weighting is worked out.
RESUMO
Os melhoristas de plantas em geral conduzem testes genéticos em delineamentos balanceados, ao contrário do que ocorre com o melhoramento animal. É possível selecionar progênies pela ANAVA conjunta, com base nas médias gerais de cada família. Sabe-se, no entanto, que os valores genéticos de progênies são melhor representados por efeitos aleatórios. As formas de análise dos testes de progênie que parecem mais apropriadas são as que seguem a metodologia de modelos mistos, como no melhoramento animal. Segundo Robinson (1991) o Melhor Preditor Linear Não-Viesado (do inglês, BLUP) não é um método, mas uma propriedade dos estimadores (preditores) dos efeitos aleatórios e pode ser derivada de tantas maneiras diferentes que tem o potencial de unificar as teorias estatísticas de modelos lineares. A presença de bons estimadores para os efeitos fixos e componentes da variância torna possível combinar informações de diferentes testes por algumas simplificações do BLUP. Este trabalho exemplifica as vantagens do Melhor Preditor Linear (BLP) aplicado ao melhoramento de plantas. Procurou-se ilustrar como proceder com estimativas de médias e de variâncias de progênies obtidas em diferentes ambientes para produzir preditores que tenham propriedades "melhor" (no sentido de variância mínima entre todas as combinações lineares entre as médias de progênies). Derivou-se uma regra prática para a produção dos pesos relativos de cada ambiente. O BLP, em alguns casos, é também não-viesado produzindo BLUPs a partir de lógica mais direta.
Palavras-chave
Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Clinical_trials / Prognostic_studies Idioma: En Ano de publicação: 2009 Tipo de documento: Article
Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Clinical_trials / Prognostic_studies Idioma: En Ano de publicação: 2009 Tipo de documento: Article