Your browser doesn't support javascript.
loading
Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism.
Wang, X; Zhou, J; Doyle, M E; Egan, J M.
Afiliação
  • Wang X; Diabetes Section, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA.
Endocrinology ; 142(5): 1820-7, 2001 May.
Article em En | MEDLINE | ID: mdl-11316746
ABSTRACT
Glucagon-like peptide-1 (GLP-1) enhances insulin secretion and synthesis. It also regulates the insulin, glucokinase, and GLUT2 genes. It mediates increases in glucose-stimulated insulin secretion by activating adenylyl cyclase and elevating free cytosolic calcium levels in the beta-cell. In addition, GLP-1 has been shown, both in vitro and in vivo, to be involved in regulation of the transcription factor, pancreatic duodenal homeobox-1 protein (PDX-1), by increasing its total protein levels, its translocation to the nucleus and its binding and resultant increase in activity of the insulin gene promoter in beta-cells of the pancreas. Here we have investigated the role of protein kinase A (PKA) in these processes in RIN 1046-38 cells. Three separate inhibitors of PKA, and a cAMP antagonist, inhibited the effects of GLP-1 on PDX-1. Furthermore, forskolin, (which stimulates adenylyl cyclase and insulin secretion), and 8-Bromo-cAMP, (an analog of cAMP which also stimulates insulin secretion), mimicked the effects of GLP-1 on PDX-1. These effects were also prevented by PKA inhibitors. Glucose-mediated increases in nuclear translocation of PDX-1 were not prevented by PKA inhibitors. Our results suggest that regulation of PDX-1 by GLP-1 occurs through activation of adenylyl cyclase and the resultant increase in intracellular cAMP, in turn, activates PKA, which ultimately leads to increases in PDX-1 protein levels and translocation of the protein to the nuclei of beta-cells.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Precursores de Proteínas / Sulfonamidas / Glucagon / Transativadores / Núcleo Celular / Proteínas Quinases Dependentes de AMP Cíclico / AMP Cíclico / Proteínas de Homeodomínio / Citoplasma Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2001 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Precursores de Proteínas / Sulfonamidas / Glucagon / Transativadores / Núcleo Celular / Proteínas Quinases Dependentes de AMP Cíclico / AMP Cíclico / Proteínas de Homeodomínio / Citoplasma Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2001 Tipo de documento: Article