Metal dynamics in Lake Vanda (Wright Valley, Antarctica).
Chem Geol
; 76: 85-94, 1989.
Article
em En
| MEDLINE
| ID: mdl-11539788
Data are reported for Mn, Fe, Co, Ni, Cu and Cd in the Onyx River, and for Mn, Co, Ni, Cu and Cd in Lake Vanda, a closed-basin Antarctic lake. Oxic water concentrations for Co, Ni, Cu and Cd were quite low and approximate pelagic ocean values. Scavenging of these metals by sinking particles is strongly indicated. Deep-lake profiles reveal a sharp peak in the concentrations of Mn, Fe and Co at the oxic-anoxic boundary at 60 m. Maxima for Ni, Cu and Cd occur higher in the water column, in the vicinity of a Mn submaximum, suggesting early release of these metals from sinking manganese oxide-coated particles. A rough steady-state model leads to the conclusion that there is a large downward flux of Mn into the deep lake and that this flux is sufficient to explain the annual loss of Co, Ni, Cu and Cd. A pronounced geochemical separation between Fe and Mn apparently occurs in this system--Fe being best lost in near-shore environments and Mn being lost in deeper waters. Comparison of metal residence times in Lake Vanda with those in the oceans shows that in both systems Mn, Fe and Co are much more reactive than Ni, Cu and Cd. Energetically favorable inclusion of the more highly charged metals, Mn(IV), Fe(III) and Co(III), into oxide-based lattices is a plausible explanation.
Palavras-chave
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Água
/
Clima Frio
/
Água Doce
/
Metais
Idioma:
En
Ano de publicação:
1989
Tipo de documento:
Article