Your browser doesn't support javascript.
loading
Targeted disruption of RC3 reveals a calmodulin-based mechanism for regulating metaplasticity in the hippocampus.
Krucker, Thomas; Siggins, George R; McNamara, Robert K; Lindsley, Kristen A; Dao, Alan; Allison, David W; De Lecea, Luis; Lovenberg, Timothy W; Sutcliffe, J Gregor; Gerendasy, Dan D.
Afiliação
  • Krucker T; Departments of Neuropharmacology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
J Neurosci ; 22(13): 5525-35, 2002 Jul 01.
Article em En | MEDLINE | ID: mdl-12097504
ABSTRACT
We used homologous recombination in the mouse to knock-out RC3, a postsynaptic, calmodulin-binding PKC substrate. Mutant brains exhibited lower immunoreactivity to phospho-Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but had the same synaptic density as wild type and did not exhibit a gross neuroanatomical phenotype. Basal excitatory synaptic transmission in CA1 was depressed, long-term potentiation (LTP) was enhanced, and the depressant effects of the metabotropic glutamate receptor (mGluR) agonist (RS)-3,5-dihydroxyphenylglycine was occluded compared with littermate controls. The frequency-response curve was displaced to the left, and long-term depression (LTD) could not be induced unless low-frequency stimuli were preceded by high-frequency tetani. Depotentiation was much more robust in the mutant, and only one stimulus was required to saturate LTD in primed mutant hippocampi, whereas multiple low-frequency stimuli were required in wild-type slices. Thus, ablation of RC3 appears to render the postsynaptic neuron hypersensitive to Ca(2+), decreasing its LTD and LTP thresholds and accentuating the effects of priming stimuli. We propose an mGluR-dependent CaM-based sliding threshold mechanism for metaplasticity that is governed by the phosphorylation states of RC3 and CaMKII.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a Calmodulina / Calmodulina / Hipocampo / Proteínas do Tecido Nervoso / Plasticidade Neuronal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2002 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a Calmodulina / Calmodulina / Hipocampo / Proteínas do Tecido Nervoso / Plasticidade Neuronal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2002 Tipo de documento: Article