Your browser doesn't support javascript.
loading
Remobilisation of 109Cd, 65Zn and 54Mn from freshwater-labelled river sediments when mixed with seawater.
Standring, W J F; Oughton, D H; Salbu, B.
Afiliação
  • Standring WJ; Department of Soil and Water Sciences, Agricultural University of Norway, Aas. william.standring@ijvf.nlh.no
Environ Int ; 28(3): 185-95, 2002 Jul.
Article em En | MEDLINE | ID: mdl-12222615
ABSTRACT
A major fraction of trace metals transported by rivers is associated with sediments, especially during flooding, when erosion and resuspension increase sediment loads. Upon contact with seawater in estuaries, changes in ionic strength and pH may remobilise trace metals from sediment surfaces into more bioavailable forms. The objective of the present work was to investigate time-dependent interactions between trace metals and freshwater sediments and their potential remobilisation upon contact with seawater. Two river sediments (one organic and one inorganic) were labelled with 109Cd2+, 65Zn2+ and 54Mn2+ radioactive tracers for periods up to 6 months. Sorption of tracers occurred rapidly (> or = 80% sorption, < 1 h), followed by a slower approach to pseudoequilibrium. Kd(6 months) were estimated as 460, 480 and 2200 ml/g (inorganic sediment) compared to 5300, 4000 and 1200 ml/g (organic sediment) for 109Cd, 65Zn and 54Mn, respectively. Remobilisation of tracers from labelled sediments was studied using sequential extractions. Artificial seawater extracts simulated an estuarine environment. Subsequent extractions provided information about more strongly sorbed tracer fractions within sediments. Remobilisation of 109Cd by seawater was significant (> 65%) and least affected by sediment type or freshwater labelling time. Redistribution of Cd to strongly bound phases was minimal (4% and 1% of 109Cd in strongly oxidisable fractions). Seawater remobilisation of 65Zn was significantly greater from the organic sediment (54%) compared to the inorganic sediment (8%), where a large fraction of 65Zn (14%) became irreversibly bound. Similarly, more 54Mn was remobilised by seawater from the organic sediment than the inorganic sediment (66% and 3% remobilised, respectively), i.e., 54Mn became more strongly bound in the inorganic sediment. A simple three-box model, based on first-order differential equations, was used to describe the interaction between tracers in spiked freshwater and two operationally defined sediment fractions ("seawater exchangeable" and "seawater unexchangeable") up to 6 months of freshwater labelling. Model simulations were fitted to experiment data and apparent rate constants were calculated using numerical optimisation methods. Sorption ratios from modelling data (i.e., k1/k2) were greater for organic compared to inorganic sediments, while fixation ratios were higher in inorganic sediments. In conclusion, trace metals can be remobilised from sediments on contact with seawater in estuaries. High organic content in sediments increased initial sorption of tracers but inhibited redistribution to more strongly bound fractions over time, resulting in greater remobilisation of tracers when in contact with seawater.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radioisótopos / Poluentes Químicos da Água / Sedimentos Geológicos / Metais Pesados Limite: Humans Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radioisótopos / Poluentes Químicos da Água / Sedimentos Geológicos / Metais Pesados Limite: Humans Idioma: En Ano de publicação: 2002 Tipo de documento: Article