Your browser doesn't support javascript.
loading
Detection methods for the expression of the dissimilatory copper-containing nitrite reductase gene (DnirK) in environmental samples.
Metz, Sigrun; Beisker, Wolfgang; Hartmann, Anton; Schloter, Michael.
Afiliação
  • Metz S; Institute of Soil Ecology, GSF-National Research Center for Environment and Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany.
J Microbiol Methods ; 55(1): 41-50, 2003 Oct.
Article em En | MEDLINE | ID: mdl-14499994
ABSTRACT
In situ assays, based on monoclonal antibodies (mAbs), were developed to study the microbial expression of the bacterial dissimilatory copper-containing nitrite reductase gene (DnirK), one of the key enzymes involved in denitrification, in different ecosystems. With a combination of an anti-DnirK mAb and phylogenetic oligonucleotide probes, it is possible to bring structural and functional aspects of microbial communities together. To perform a double labelling, yielding a high signal strength for both the oligonucleotide and the antibody, cells have to be labelled with the oligonucleotide first followed by immunostaining. When the labelling sequence was changed, the accessibility for the oligonucleotide was reduced if high amounts of DnirK were expressed. Using flow cytometry, it was possible to sort bacterial cells, which were stained by the antibody, from nonlabelled cells. This technique provides means for a detailed analysis of populations, which express DnirK genes in the environment, including structural aspects of a community and detailed promoter studies. Using the immunostaining approach, it was possible to identify bacteria, which have the DnirK system expressed, in samples from a wastewater sewage treatment plant as well as in samples from the rhizosphere of wheat roots. Furthermore, expression studies using an Ochrobactrum anthropi strain were carried out to investigate the correlation between N(2)O production rates and DnirK expression in batch cultures, which had been shifted from aerobic to anaerobic conditions. As expected, expression of DnirK was the highest during periods with the greatest synthesis rates for N(2)O. However, the amount of expressed enzyme was not reduced in the cells, although the N(2)O production rates dropped in the cultures 12 h after the shift from aerobic to anaerobic conditions.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Microbiologia Ambiental / Nitrito Redutases Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2003 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Microbiologia Ambiental / Nitrito Redutases Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2003 Tipo de documento: Article