Your browser doesn't support javascript.
loading
Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation.
Van Coppenolle, Fabien; Skryma, Roman; Ouadid-Ahidouch, Halima; Slomianny, Christian; Roudbaraki, Morad; Delcourt, Philippe; Dewailly, Etienne; Humez, Sandrine; Crépin, Alexandre; Gourdou, Isabelle; Djiane, Jean; Bonnal, Jean-Louis; Mauroy, Brigitte; Prevarskaya, Natalia.
Afiliação
  • Van Coppenolle F; Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologies de Lille, Bât. SN3, 59655 Villeneuve d'Ascq Cedex, France.
Biochem J ; 377(Pt 3): 569-78, 2004 Feb 01.
Article em En | MEDLINE | ID: mdl-14565846
ABSTRACT
PRL (prolactin) has been implicated in the proliferation and differentiation of numerous tissues, including the prostate gland. However, the PRL-R (PRL receptor) signal transduction pathway, leading to the stimulation of cell proliferation, remains unclear and has yet to be mapped. The present study was undertaken to develop a clear understanding of the mechanisms involved in this pathway and, in particular, to determine the role of K(+) channels. We used androgen-sensitive prostate cancer (LNCaP) cells whose proliferation is known to be stimulated by PRL. Reverse transcriptase PCR analysis showed that LNCaP cells express a long form of PRL-R, but do not produce its intermediate isoform. Patch-clamp techniques showed that the application of 5 nM PRL increased both the macroscopic K(+) current amplitude and the single K(+)-channel open probability. This single-channel activity increase was reduced by the tyrosine kinase inhibitors genistein, herbimycin A and lavandustine A, thereby indicating that tyrosine kinase phosphorylation is required in PRL-induced K(+) channel stimulation. PRL enhances p59( fyn ) phosphorylation by a factor of 2 after a 10 min application in culture. In addition, where an antip59( fyn ) antibody is present in the patch pipette, PRL no longer increases K(+) current amplitude. Furthermore, the PRL-stimulated proliferation is inhibited by the K(+) channel inhibitors alpha-dendrotoxin and tetraethylammonium. Thus, as K(+) channels are known to be involved in LNCaP cell proliferation, we suggest that K(+) channel modulation by PRL, via p59( fyn ) pathway, is the primary ionic event in PRL signal transduction, triggering cell proliferation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prolactina / Receptores da Prolactina / Canais de Potássio Limite: Humans / Male Idioma: En Ano de publicação: 2004 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prolactina / Receptores da Prolactina / Canais de Potássio Limite: Humans / Male Idioma: En Ano de publicação: 2004 Tipo de documento: Article