Your browser doesn't support javascript.
loading
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines.
Cawley, Gavin C; Talbot, Nicola L C.
Afiliação
  • Cawley GC; School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK. gcc@cmp.uea.ac.uk
Neural Netw ; 17(10): 1467-75, 2004 Dec.
Article em En | MEDLINE | ID: mdl-15541948
Leave-one-out cross-validation has been shown to give an almost unbiased estimator of the generalisation properties of statistical models, and therefore provides a sensible criterion for model selection and comparison. In this paper we show that exact leave-one-out cross-validation of sparse Least-Squares Support Vector Machines (LS-SVMs) can be implemented with a computational complexity of only O(ln2) floating point operations, rather than the O(l2n2) operations of a naïve implementation, where l is the number of training patterns and n is the number of basis vectors. As a result, leave-one-out cross-validation becomes a practical proposition for model selection in large scale applications. For clarity the exposition concentrates on sparse least-squares support vector machines in the context of non-linear regression, but is equally applicable in a pattern recognition setting.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Análise dos Mínimos Quadrados / Modelos Estatísticos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Análise dos Mínimos Quadrados / Modelos Estatísticos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2004 Tipo de documento: Article