Your browser doesn't support javascript.
loading
Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord.
Li, Peiying; Tessler, Alan; Han, Steve S W; Fischer, Itzhak; Rao, Mahendra S; Selzer, Michael E.
Afiliação
  • Li P; Department of Neurology and the David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104-4283, USA.
Arch Neurol ; 62(2): 223-9, 2005 Feb.
Article em En | MEDLINE | ID: mdl-15710850
ABSTRACT

BACKGROUND:

Replacement of neurons and glia by transplantation has been proposed as a therapy for neurodegenerative diseases, including amyotrophic lateral sclerosis. This strategy requires using human motor neuronal progenitor cells or xenografts of animal cells, but there is little evidence that xenografted neuronal cells can survive in spinal cord despite immunosuppression.

OBJECTIVE:

To clarify the mechanisms responsible for the death of xenografted neurons in spinal cord.

METHODS:

Cells from an immortalized, neuronally committed, human embryonic spinal cord-derived cell line (HSP1) that expresses motor neuronal properties in vitro were transplanted into adult rat spinal cord. The rats were killed at intervals up to 8 weeks and serial sections through the graft sites were processed for immunofluorescence using primary antibodies against human nuclear and mitochondrial antigens, microtubule-associated protein 2, TUJ1, CD5, natural killer cells, and activated microglia-macrophages, caspase-3 and caspase-9.

RESULTS:

Grafted cells did not migrate and underwent partial differentiation along a neuronal pathway. They were rejected after 4 weeks despite cyclosporine immunosuppression. Cells died by apoptosis via the cytochrome c/caspase-9/caspase-3 pathway. The host response included natural killer cells and activated microglia-macrophages but few T cells.

CONCLUSIONS:

Intraspinal neuronal xenotransplantation failed because of apoptotic cell death. Neither T cells nor the spinal cord environment, which favors gliogenesis, are likely to have been responsible, but natural killer cells may have been involved.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Transplante de Células-Tronco / Neurônios Limite: Animals / Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Transplante de Células-Tronco / Neurônios Limite: Animals / Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article