Your browser doesn't support javascript.
loading
In situ studies of algal biomass in relation to physicochemical characteristics of the Salt Plains National Wildlife Refuge, Oklahoma, USA.
Major, Kelly M; Kirkwood, Andrea E; Major, Clinton S; McCreadie, John W; Henley, William J.
Afiliação
  • Major KM; Department of Biological Sciences, University of South Alabama, Mobile, AL 36688 USA. kmajor@usouthal.edu
Saline Syst ; 1: 11, 2005 Dec 15.
Article em En | MEDLINE | ID: mdl-16356185
This is the first in a series of experiments designed to characterize the Salt Plains National Wildlife Refuge (SPNWR) ecosystem in northwestern Oklahoma and to catalogue its microbial inhabitants. The SPNWR is the remnant of an ancient ocean, encompassing approximately 65 km2 of variably hypersaline flat land, fed by tributaries of the Arkansas River. Relative algal biomass (i.e., chlorophyll concentrations attributed to Chlorophyll-a-containing oxygenic phototrophs) and physical and chemical parameters were monitored at three permanent stations for a one-year period (July 2000 to July 2001) using a nested block design. Salient features of the flats include annual air temperatures that ranged from -10 to 40 degrees C, and similar to other arid/semi-arid environments, 15-20-degree daily swings were common. Shade is absent from the flats system; intense irradiance and high temperatures (air and sediment surface) resulted in low water availability across the SPNWR, with levels of only ca. 15 % at the sediment surface. Moreover, moderate daily winds were constant (ca. 8-12 km h-1), sometimes achieving maximum speeds of up to 137 km h-1. Typical of freshwater systems, orthophosphate (PO(4)3-) concentrations were low, ranging from 0.04 to <1 microM; dissolved inorganic nitrogen levels were high, but spatially variable, ranging from ca. 250-600 microM (NO(3)- + NO(2)-) and 4-166 microM (NH(4)+). Phototroph abundance was likely tied to nutrient availability, with high-nutrient sites exhibiting high Chl-a levels (ca. 1.46 mg m-2). Despite these harsh conditions, the phototrophic microbial community was unexpectedly diverse. Preliminary attempts to isolate and identify oxygenic phototrophs from SPNWR water and soil samples yielded 47 species from 20 taxa and 3 divisions. Our data indicate that highly variable, extreme environments might support phototrophic microbial communities characterized by higher species diversity than previously assumed.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2005 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2005 Tipo de documento: Article