Your browser doesn't support javascript.
loading
Structure, stability, electronic and magnetic properties of Ni4 clusters containing impurity atoms.
St Petkov, Petko; Vayssilov, Georgi N; Krüger, Sven; Rösch, Notker.
Afiliação
  • St Petkov P; Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria.
Phys Chem Chem Phys ; 8(11): 1282-91, 2006 Mar 21.
Article em En | MEDLINE | ID: mdl-16633608
ABSTRACT
Using a gradient-corrected density functional method, we studied computationally how single impurity atoms affect the structure and the properties of a Ni4 cluster. H and O atoms coordinate at a Ni-Ni bond, inducing small changes to the structure of bare Ni4 which is essentially a tetrahedron. For a C impurity, we found three stable structures at a Ni4 cluster. In the most stable geometry, the carbon atom cleaves a Ni-Ni bond of Ni4, binding to all Ni atoms. Inclusion of the impurity atom leads to a partial oxidation of the metal atoms and, in the most stable structures, reduces the spin polarization of the cluster compared to bare Ni4. An H impurity interacts mainly with the Ni 4s orbitals, whereas the Ni 3d orbitals participate strongly in the bonding with O and C impurity atoms. For these impurity atoms, Ni 3d contributions dominate the character of the HOMO of the ligated cluster, in contrast to the HOMO of bare Ni4 where Ni 4s orbitals prevail. We also discuss a simple model which relates the effect of a H impurity on the magnetic state of metal clusters to the spin character (minority or majority) of the LUMO or HOMO of the bare metal cluster.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2006 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2006 Tipo de documento: Article