Your browser doesn't support javascript.
loading
Model selection for geostatistical models.
Hoeting, Jennifer A; Davis, Richard A; Merton, Andrew A; Thompson, Sandra E.
Afiliação
  • Hoeting JA; Department of Statistics, Colorado State University, Fort Collins, Colorado 80523-1877, USA. jah@lamar.colostate.edu
Ecol Appl ; 16(1): 87-98, 2006 Feb.
Article em En | MEDLINE | ID: mdl-16705963
We consider the problem of model selection for geospatial data. Spatial correlation is often ignored in the selection of explanatory variables, and this can influence model selection results. For example, the importance of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often-used traditional approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also apply the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored. R software to implement the geostatistical model selection methods described in this paper is available in the Supplement.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Estatística como Assunto / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2006 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Estatística como Assunto / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2006 Tipo de documento: Article