Your browser doesn't support javascript.
loading
Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes.
Wiesman, Zeev; Dom, Naomi Ben; Sharvit, Efrat; Grinberg, Sarina; Linder, Charles; Heldman, Eli; Zaccai, Michele.
Afiliação
  • Wiesman Z; Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. wiesman@bgu.ac.il
J Biotechnol ; 130(1): 85-94, 2007 May 31.
Article em En | MEDLINE | ID: mdl-17442442
ABSTRACT
Novel cationic amphiphilic compounds were prepared from vernonia oil, a natural epoxidized triglyceride, and studied with respect to vesicle formation, encapsulation of biomaterials such as DNA, and their physical stability and transport through isolated plant cuticle membranes. The amphiphiles studied were a single-headed compound III (a quaternary ammonium head group with two alkyl chains) and a triple-headed compound IV, which is essentially three molecules of compound III bound together through a glycerol moiety. Vesicles of the two amphiphiles, prepared by sonication in water and solutions of uranyl acetate or the herbicide 2,4-D (2,4-dichloropenoxy acetic acid), were examined by TEM, SEM, AFM, and confocal laser systems and had a spherical shape which encapsulated the solutes with diameters between 40 and 110 nm. Vesicles from amphiphile IV could be made large enough to encapsulate a condensed 5.2kb DNA plasmid (pJD328). Vesicles of amphiphile IV were also shown to pass intact across isolated plant cuticle membranes and the rate of delivery of encapsulated radio-labeled 2,4-D through isolated plant cuticle membranes obtained with these vesicles was clearly greater in comparison to liposomes prepared from dipalmitopyl phosphatidylcholine (DPPC) and the control, nonencapsulated 2,4-D. Vesicles from amphiphiles III and IV were found to be more stable than those of liposomes from DPPC. The data indicate the potential of vesicles prepared from the novel amphiphile IV to be a relatively efficient nano-scale delivery system to transport DNA and other bioactive agents through plant biological barriers. This scientific approach may open the way for further development of efficient in vivo plant transformation systems.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biotecnologia / Óleos de Plantas / Genes de Plantas / Técnicas de Transferência de Genes / Vernonia Idioma: En Ano de publicação: 2007 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biotecnologia / Óleos de Plantas / Genes de Plantas / Técnicas de Transferência de Genes / Vernonia Idioma: En Ano de publicação: 2007 Tipo de documento: Article