Your browser doesn't support javascript.
loading
Predictive uncertainty in environmental modelling.
Cawley, Gavin C; Janacek, Gareth J; Haylock, Malcolm R; Dorling, Stephen R.
Afiliação
  • Cawley GC; School of Computing Sciences, University of East Anglia, Norwich, UK. gcc@cmp.uea.ac.uk
Neural Netw ; 20(4): 537-49, 2007 May.
Article em En | MEDLINE | ID: mdl-17531441
Artificial neural networks have proved an attractive approach to non-linear regression problems arising in environmental modelling, such as statistical downscaling, short-term forecasting of atmospheric pollutant concentrations and rainfall run-off modelling. However, environmental datasets are frequently very noisy and characterized by a noise process that may be heteroscedastic (having input dependent variance) and/or non-Gaussian. The aim of this paper is to review existing methodologies for estimating predictive uncertainty in such situations and, more importantly, to illustrate how a model of the predictive distribution may be exploited in assessing the possible impacts of climate change and to improve current decision making processes. The results of the WCCI-2006 predictive uncertainty in environmental modelling challenge are also reviewed, suggesting a number of areas where further research may provide significant benefits.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Redes Neurais de Computação / Incerteza / Meio Ambiente Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2007 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Redes Neurais de Computação / Incerteza / Meio Ambiente Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2007 Tipo de documento: Article