Your browser doesn't support javascript.
loading
Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells.
Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina A; O'Neal, Wanda; Gabriel, Sherif; Abdullah, Lubna; Davis, C William; Boucher, Richard C; Lazarowski, Eduardo R.
Afiliação
  • Kreda SM; Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 7017 Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA. silvia_kreda@med.unc.edu
J Physiol ; 584(Pt 1): 245-59, 2007 Oct 01.
Article em En | MEDLINE | ID: mdl-17656429
ABSTRACT
The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu-3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu-3 cells identified subapical granules that resembled goblet cell mucin granules. Real-time confocal microscopic analyses revealed that subapical granules, labelled with FM 1-43 or quinacrine, were competent for Ca(2+)-regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca(2+)-regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu-3 cells exhibited Ca(2+)-regulated apical release of ATP and UDP-glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu-3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y(2) receptor-stimulated increase of cytosolic Ca(2+) concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within the ASL.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Mucosa Respiratória / Exocitose / Mucinas / Nucleotídeos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2007 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Mucosa Respiratória / Exocitose / Mucinas / Nucleotídeos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2007 Tipo de documento: Article