Orbit-orbit relativistic corrections to the pure vibrational non-Born-Oppenheimer energies of H(2).
J Chem Phys
; 128(11): 114313, 2008 Mar 21.
Article
em En
| MEDLINE
| ID: mdl-18361577
We report the derivation of the orbit-orbit relativistic correction for calculating pure vibrational states of diatomic molecular systems with sigma electrons within the framework that does not assume the Born-Oppenheimer (BO) approximation. The correction is calculated as the expectation value of the orbit-orbit interaction operator with the non-BO wave function expressed in terms of explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance. With that we can now calculate the complete relativistic correction of the order of alpha(2) (where alpha=1/c). The new algorithm is applied to determine the full set of the rotationless vibrational levels and the corresponding transition frequencies of the H(2) molecule. The results are compared with the previous calculations, as well as with the frequencies obtained from the experimental spectra. The comparison shows the need to include corrections higher than second order in alpha to further improve the agreement between the theory and the experiment.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2008
Tipo de documento:
Article