Real-time detection of pneumothorax using electrical impedance tomography.
Crit Care Med
; 36(4): 1230-8, 2008 Apr.
Article
em En
| MEDLINE
| ID: mdl-18379250
OBJECTIVES: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. DESIGN: Prospective controlled laboratory animal investigation. SETTING: Experimental Pulmonology Laboratory of the University of São Paulo. SUBJECTS: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). INTERVENTIONS: In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. MEASUREMENTS AND MAIN RESULTS: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers. Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. CONCLUSIONS: We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pneumotórax
/
Tomografia
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2008
Tipo de documento:
Article