Your browser doesn't support javascript.
loading
Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes.
Soro-Paavonen, Aino; Watson, Anna M D; Li, Jiaze; Paavonen, Karri; Koitka, Audrey; Calkin, Anna C; Barit, David; Coughlan, Melinda T; Drew, Brian G; Lancaster, Graeme I; Thomas, Merlin; Forbes, Josephine M; Nawroth, Peter P; Bierhaus, Angelika; Cooper, Mark E; Jandeleit-Dahm, Karin A.
Afiliação
  • Soro-Paavonen A; Albert Einstein Juvenile Diabetes Research Foundation Centre for Diabetes Complications, Diabetes Metabolism Division, Baker Heart Research Institute, Melbourne, Australia.
Diabetes ; 57(9): 2461-9, 2008 Sep.
Article em En | MEDLINE | ID: mdl-18511846
ABSTRACT

OBJECTIVE:

Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE(-/-) model of accelerated atherosclerosis. RESEARCH DESIGN AND

METHODS:

ApoE(-/-) and RAGE(-/-)/apoE(-/-) double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis.

RESULTS:

Although diabetic apoE(-/-) mice showed increased plaque accumulation (14.9 +/- 1.7%), diabetic RAGE(-/-)/apoE(-/-) mice had significantly reduced atherosclerotic plaque area (4.9 +/- 0.4%) to levels not significantly different from control apoE(-/-) mice (4.3 +/- 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-kappaB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE(-/-) mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE(-/-)/apoE(-/-) mice.

CONCLUSIONS:

This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Finais de Glicação Avançada / Proteínas Quinases Ativadas por Mitógeno / Angiopatias Diabéticas / Aterosclerose Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Finais de Glicação Avançada / Proteínas Quinases Ativadas por Mitógeno / Angiopatias Diabéticas / Aterosclerose Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2008 Tipo de documento: Article