Your browser doesn't support javascript.
loading
Design and performance of a practical variable-temperature scanning tunneling potentiometry system.
Rozler, M; Beasley, M R.
Afiliação
  • Rozler M; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
Rev Sci Instrum ; 79(7): 073904, 2008 Jul.
Article em En | MEDLINE | ID: mdl-18681713
ABSTRACT
We have constructed a scanning tunneling potentiometry system capable of simultaneously mapping the transport-related electrochemical potential of a biased sample along with its surface topography. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit--the Johnson noise of the scanning tunneling microscope (STM) tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining angstrom scale STM imaging, all at scan sizes of up to 15 microm. A millimeter-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. By performing studies of several model systems, we discuss the implications of various types of surface morphology for potentiometric measurements.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2008 Tipo de documento: Article