The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes.
PLoS One
; 3(9): e3208, 2008 Sep 15.
Article
em En
| MEDLINE
| ID: mdl-18791645
BACKGROUND: Despite the considerable progress made in understanding the molecular bases of mitochondrial diseases, no effective treatments have been developed to date. Faithful animal models would be extremely helpful for designing such treatments. We showed previously that the Harlequin mouse phenotype was due to a specific mitochondrial complex I deficiency resulting from the loss of the Apoptosis Inducing Factor (Aif) protein. METHODOLOGY/PRINCIPAL FINDINGS: Here, we conducted a detailed evaluation of the Harlequin mouse phenotype, including the biochemical abnormalities in various tissues. We observed highly variable disease expression considering both severity and time course progression. In each tissue, abnormalities correlated with the residual amount of the respiratory chain complex I 20 kDa subunit, rather than with residual Aif protein. Antioxidant enzyme activities were normal except in skeletal muscle, where they were moderately elevated. CONCLUSIONS/SIGNIFICANCE: Thus, the Harlequin mouse phenotype appears to result from mitochondrial respiratory chain complex I deficiency. Its features resemble those of human complex I deficiency syndromes. The Harlequin mouse holds promise as a model for developing treatments for complex I deficiency syndromes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Complexo I de Transporte de Elétrons
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2008
Tipo de documento:
Article