Your browser doesn't support javascript.
loading
Thiamine suppresses thermal hyperalgesia, inhibits hyperexcitability, and lessens alterations of sodium currents in injured, dorsal root ganglion neurons in rats.
Song, Xue-Song; Huang, Zhi-Jiang; Song, Xue-Jun.
Afiliação
  • Song XS; Department of Neurobiology, Parker University Research Institute, Dallas, Texas 75229, USA.
Anesthesiology ; 110(2): 387-400, 2009 Feb.
Article em En | MEDLINE | ID: mdl-19194165
ABSTRACT

BACKGROUND:

B vitamins can effectively attenuate inflammatory and neuropathic pain in experimental animals, while their efficacy in treating clinical pain syndromes remains unclear. To understand possible mechanisms underlying B vitamin-induced analgesia and provide further evidence that may support the clinical utility of B vitamins in chronic pain treatment, this study investigated effects of thiamine (B1) on the excitability and Na currents of dorsal root ganglion (DRG) neurons that have been altered by nerve injury.

METHODS:

Nerve injury was mimicked by chronic compression of DRG in rats. Neuropathic pain was evidenced by the presence of thermal hyperalgesia. Intracellular and patch-clamp recordings were made in vitro from intact and dissociated DRG neurons, respectively.

RESULTS:

(1) In vivo intraperitoneal administration of B1 (66 mg/kg/day, 10-14 doses) significantly inhibited DRG compression-induced neural hyperexcitability, in addition to suppressing thermal hyperalgesia. (2) In vitro perfusion of B1 (0.1, 1 and 10 mM) resulted in a dose-dependent inhibition of DRG neuron hyperexcitability. In addition, the DRG neurons exhibited size-dependent sensitivity to B1 treatment, i.e., the small and the medium-sized neurons, compared to the large neurons, were significantly more sensitive. (3) Both in vitro (1 mM) and in vivo application of B1 significantly reversed DRG compression-induced down-regulation of tetrodotoxin-resistant but not tetrodotoxin-sensitive Na current density in the small neurons. B1 at 1 mM also reversed the compression-induced hyperpolarizing shift of the inactivation curve of the tetrodotoxin-resistant currents and the upregulated ramp currents in small DRG neurons.

CONCLUSION:

Thiamine can reduce hyperexcitability and lessen alterations of Na currents in injured DRG neurons, in addition to suppressing thermal hyperalgesia.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tiamina / Vitaminas / Canais de Sódio / Gânglios Espinais / Hiperalgesia / Neurônios Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tiamina / Vitaminas / Canais de Sódio / Gânglios Espinais / Hiperalgesia / Neurônios Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article