Your browser doesn't support javascript.
loading
Nonlinear system identification based on internal recurrent neural networks.
Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel.
Afiliação
  • Puscasu G; Faculty of Computer Science, "Dunarea de Jos" University of Galati, Str. Domneasca No.111, 800211, Romania. gpuscasu@ugal.ro
Int J Neural Syst ; 19(2): 115-25, 2009 Apr.
Article em En | MEDLINE | ID: mdl-19496207
A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Dinâmica não Linear Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2009 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Dinâmica não Linear Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2009 Tipo de documento: Article