Your browser doesn't support javascript.
loading
Plant cell wall characterization using scanning probe microscopy techniques.
Yarbrough, John M; Himmel, Michael E; Ding, Shi-You.
Afiliação
  • Yarbrough JM; Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA. John_Yarbrough@nrel.gov
Biotechnol Biofuels ; 2: 17, 2009 Aug 24.
Article em En | MEDLINE | ID: mdl-19703302
ABSTRACT
Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article