Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study.
J Acoust Soc Am
; 126(3): 963-72, 2009 Sep.
Article
em En
| MEDLINE
| ID: mdl-19739709
High amplitude vibrations induce amplitude dependence of the characteristic resonance parameters (i.e., resonance frequency and damping factor) in materials with microscopic damage features as a result of the nonlinear constitutive relation at the damage location. This paper displays and quantifies results of the nonlinear resonance technique, both in time (signal reverberation) and in frequency (sweep) domains, as a function of sample crack density. The reverberation spectroscopy technique is applied to carbon fiber reinforced plastic (CFRP) composites exposed to increasing thermal loading. Considerable gain in sensitivity and consistent interpretation of the results for nonlinear signatures in comparison with the linear characteristics are obtained. The amount of induced damage is quantified by analyzing light optical microscopy images of several cross-sections of the CFRP samples using histogram equalization and grayscale thresholding. The obtained measure of crack density is compared to the global macroscopic nonlinearity of the sample and explicitly confirms that the increase in nonlinearity is linked to an increased network of cracks. A change from 1% to 3% in crack density corresponds to a tenfold increase in the signature of nonlinearity. Numerical simulations based on a uniform distribution of a hysteretic nonlinear constitutive relation within the sample support the results.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2009
Tipo de documento:
Article