Your browser doesn't support javascript.
loading
Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor.
Michailidis, Eleftherios; Marchand, Bruno; Kodama, Eiichi N; Singh, Kamlendra; Matsuoka, Masao; Kirby, Karen A; Ryan, Emily M; Sawani, Ali M; Nagy, Eva; Ashida, Noriyuki; Mitsuya, Hiroaki; Parniak, Michael A; Sarafianos, Stefan G.
Afiliação
  • Michailidis E; Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, USA.
J Biol Chem ; 284(51): 35681-91, 2009 Dec 18.
Article em En | MEDLINE | ID: mdl-19837673
Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3'-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a nucleoside analog that retains a 3'-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC(50) of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5'-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3'-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3'-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3'-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4'-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3'-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Replicação Viral / DNA Viral / Modelos Moleculares / HIV-1 / Inibidores da Transcriptase Reversa / Nucleotídeos de Desoxiadenina / Transcriptase Reversa do HIV Limite: Humans Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Replicação Viral / DNA Viral / Modelos Moleculares / HIV-1 / Inibidores da Transcriptase Reversa / Nucleotídeos de Desoxiadenina / Transcriptase Reversa do HIV Limite: Humans Idioma: En Ano de publicação: 2009 Tipo de documento: Article