Your browser doesn't support javascript.
loading
Therapeutic efficacy evaluation of 111In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging.
Chow, Tong-Hsien; Lin, Yi-Yu; Hwang, Jeng-Jong; Wang, Hsin-Ell; Tseng, Yun-Long; Pang, Victor Fei; Liu, Ren-Shyan; Lin, Wuu-Jyh; Yang, Chung-Shi; Ting, Gann.
Afiliação
  • Chow TH; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
J Nucl Med ; 50(12): 2073-81, 2009 Dec.
Article em En | MEDLINE | ID: mdl-19949027
ABSTRACT
UNLABELLED In our previous studies using combined radioisotopes with chemotherapeutic liposomal drugs (i.e., (111)In-labeled polyethylene glycol (PEG)ylated liposomal vinorelbine) we have reported possible therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this chemotherapy has a therapeutic effect as good as that of combination therapy. The goal of this study was to investigate the real therapeutic effectiveness of 6 mol% PEG (111)In-vinorelbine liposomes via the elevation of the radiation dosage and reduction in the concentration of chemotherapeutic agents.

METHODS:

Murine colon carcinoma cells transfected with dual-reporter genes (CT-26/tk-luc) were xenografted into BALB/c mice. The biodistribution was estimated to determine the drug profile and targeting efficiency of (111)In-vinorelbine liposomes. Bioluminescence imaging and (18)F-FDG small-animal PET were applied to monitor the therapeutic response after drug administration. The survival in vivo was estimated and linked with the toxicologic and histopathologic analyses to determine the preclinical safety and feasibility of the nanomedicine.

RESULTS:

Effective long-term circulation of radioactivity in the plasma was achieved by 6 mol% PEG (111)In-vinorelbine liposomes, and this dose showed significantly lower uptake in the reticuloendothelial system than that of 0.9 mol% PEG (111)In-vinorelbine liposomes. Selective tumor uptake was represented by cumulative deposition, and the maximum accumulation was at 48 h after injection. The combination therapy exhibited an additive effect for tumor growth suppression as tracked by caliper measurement, bioluminescence imaging, and small-animal PET. Furthermore, an improved survival rate and reduced tissue toxicity were closely correlated with the toxicologic and histopathologic results.

CONCLUSION:

The results demonstrated that the use of 6 mol% PEG (111)In-vinorelbine liposomes for passively targeted tumor therapy displayed an additive effect with combined therapy, not only by prolonging the circulation rate because of a reduction in the phagocytic effect of the reticuloendothelial system but also by enhancing tumor uptake. Thus, this preclinical study suggests that 6 mol% PEG (111)In-vinorelbine liposomes have the potential to increase the therapeutic index and reduce the toxicity of the passively nanotargeted chemoradiotherapies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Vimblastina / Radioisótopos de Índio / Neoplasias do Colo Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Vimblastina / Radioisótopos de Índio / Neoplasias do Colo Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article