Your browser doesn't support javascript.
loading
The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth.
Castaño, Zafira; Gordon-Weeks, Phillip R; Kypta, Robert M.
Afiliação
  • Castaño Z; Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain.
J Neurochem ; 113(1): 117-30, 2010 Apr.
Article em En | MEDLINE | ID: mdl-20067585
ABSTRACT
Glycogen synthase kinase-3 (GSK-3) has become an important target for the treatment of mood disorders and neurodegenerative disease. It comprises three enzymes, GSK-3alpha, beta and the neuron-specific isoform, beta2. GSK-3 regulates axon growth by phosphorylating microtubule-associated proteins including Tau. A genetic polymorphism that leads to an increase in the ratio of GSK-3beta1 to GSK-3beta2 interacts with Tau haplotypes to modify disease risk in Parkinson's and Alzheimer's disease. We have examined the roles of each isoform of GSK-3 in neurons. Silencing of GSK-3beta2 inhibited retinoic acid-induced neurite outgrowth in SH-SY5Y neuroblastoma cells and axon growth in rat cortical neurons. Inhibition of neurite outgrowth was prevented by co-expression of GSK-3beta2 but not by co-expression of GSK-3alpha or GSK-3beta1. Ectopic expression GSK-3beta2 enhanced the effects of retinoic acid on neurite length and induced neurite formation in the absence of retinoic acid. GSK-3beta2 phosphorylated Tau at a subset of those sites phosphorylated by GSK-3beta1. In addition, Axin, which regulates responses to Wnt signals, associated more readily with GSK-3beta1 than with GSK-3beta2. Our results suggest that GSK-3 inhibitors that target the Axin-binding site in GSK-3 will preserve the beneficial effects of GSK-3beta2 on axon growth.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Quinase 3 da Glicogênio Sintase / Neurônios Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Quinase 3 da Glicogênio Sintase / Neurônios Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article