Your browser doesn't support javascript.
loading
Surface and interface processes during atomic layer deposition of copper on silicon oxide.
Dai, Min; Kwon, Jinhee; Halls, Mathew D; Gordon, Roy G; Chabal, Yves J.
Afiliação
  • Dai M; Laboratory for Surface Modification, Rutgers University, Piscataway, New Jersey 08854, USA.
Langmuir ; 26(6): 3911-7, 2010 Mar 16.
Article em En | MEDLINE | ID: mdl-20092316
ABSTRACT
The initial surface chemistry and growth mechanisms of the atomic layer deposition (ALD) of metallic copper on SiO(2) surfaces are investigated using an amidinate precursor (copper(I) di-sec-butylacetamidinate, [Cu((s)Bu-amd)](2)) and molecular hydrogen. Using in situ Fourier transform infrared spectroscopy together with calculations based on density functional theory, we show that the initial surface reaction of [Cu((s)Bu-amd)](2) with hydroxylated SiO(2) takes place by displacement of one of the sec-butylacetamidinate ligands at a surface -OH site, thus forming a Si-O-Cu-((s)Bu-amd) surface species, evident by the stretching vibrations of Si-O-Cu and the chelating -NCN- bonds. Molecular hydrogen exposure during a subsequent pulse dissociates most of the sec-butylacetamidinate ligands bound to surface Cu, which releases free amidine vapor, leaving Cu atoms free to agglomerate on the surface and thus opening more reactive sites for the next [Cu((s)Bu-amd)](2) pulse. Copper agglomeration is evident in the IR absorbance spectra through the partial recovery of the intensity of SiO(2) optical phonon modes upon H(2) reduction, which was lost after the reaction of [Cu((s)Bu-amd)](2) with the initial SiO(2) surface. The thermally activated ligand rearrangement from a bridging to a monodentate structure occurs above 220 degrees C through hydrogenation of the ligand by surface hydroxyl groups after exposure to a [Cu((s)Bu-amd)](2) pulse. As Cu particles grow with further ALD cycles, the activation temperature is lowered to 185 degrees C, and hydrogenation of the ligand takes place after H(2) pulses, catalyzed by Cu particles on the surface. The surface ligand rearranged into a monodentate structure can be removed during subsequent Cu precursor or H(2) pulses. Finally, we postulate that the attachment of dissociated ligands to the SiO(2) surface during the [Cu((s)Bu-amd)](2) pulse can be responsible for carbon contamination at the surface during the initial cycles of growth, where the SiO(2) surface is not yet completely covered by copper metal.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2010 Tipo de documento: Article