Your browser doesn't support javascript.
loading
Population Pharmacokinetic/Pharmacodyanamic Mixture Models via Maximum a Posteriori Estimation.
Wang, Xiaoning; Schumitzky, Alan; D'Argenio, David Z.
Afiliação
  • Wang X; Clinical Discovery, Strategic Modeling & Simulation Group, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA.
Comput Stat Data Anal ; 53(12): 3907-3915, 2009 Oct 01.
Article em En | MEDLINE | ID: mdl-20161085
Pharmacokinetic/pharmacodynamic phenotypes are identified using nonlinear random effects models with finite mixture structures. A maximum a posteriori probability estimation approach is presented using an EM algorithm with importance sampling. Parameters for the conjugate prior densities can be based on prior studies or set to represent vague knowledge about the model parameters. A detailed simulation study illustrates the feasibility of the approach and evaluates its performance, including selecting the number of mixture components and proper subject classification.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article