Your browser doesn't support javascript.
loading
Prediction of functionally selective allosteric interactions at an M3 muscarinic acetylcholine receptor mutant using Saccharomyces cerevisiae.
Stewart, Gregory D; Sexton, Patrick M; Christopoulos, Arthur.
Afiliação
  • Stewart GD; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, Victoria, Australia .
Mol Pharmacol ; 78(2): 205-14, 2010 Aug.
Article em En | MEDLINE | ID: mdl-20466821
Saccharomyces cerevisiae is a tractable yeast species for expression and coupling of heterologous G protein-coupled receptors with the endogenous pheromone response pathway. Although this platform has been used for ligand screening, no studies have probed its ability to predict novel pharmacology and functional selectivity of allosteric ligands. As a proof of concept, we expressed a rat M(3) muscarinic acetylcholine receptor (mAChR) bearing a mutation (K(7.32)E) recently identified to confer positive cooperativity between acetylcholine and the allosteric modulator brucine in various strains of S. cerevisiae, each expressing a different human Galpha/yeast Gpa1 protein chimera, and probed for G protein-biased allosteric modulation. Subsequent assays performed in this system revealed that brucine was a partial allosteric agonist and positive modulator of carbachol when coupled to Gpa1/G(q) proteins, a positive modulator (no agonism) when coupled to Gpa1/G(12) proteins, and a neutral modulator when coupled to Gpa1/G(i) proteins. It is noteworthy that these results were validated at the human M(3)K(7.32)E mAChR expressed in a mammalian (Chinese hamster ovary) cell background by determination of calcium mobilization and membrane ruffling as surrogate measures of G(q) and G(12) protein activation, respectively. Furthermore, the combination of this functionally selective allosteric modulator with G protein-biased yeast screens allowed us to ascribe a potential G protein candidate (G(12)) as a key mediator for allosteric modulation of M(3)K(7.32)E mAChR-mediated ERK1/2 phosphorylation, which was confirmed by small interfering RNA knockdown experiments. These results highlight how the yeast platform can be used to identify functional selectivity of allosteric ligands and to facilitate dissection of convergent signaling pathways.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Receptor Muscarínico M3 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Receptor Muscarínico M3 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article