Your browser doesn't support javascript.
loading
Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model.
Ifkovits, Jamie L; Tous, Elena; Minakawa, Masahito; Morita, Masato; Robb, J Daniel; Koomalsingh, Kevin J; Gorman, Joseph H; Gorman, Robert C; Burdick, Jason A.
Afiliação
  • Ifkovits JL; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Proc Natl Acad Sci U S A ; 107(25): 11507-12, 2010 Jun 22.
Article em En | MEDLINE | ID: mdl-20534527
ABSTRACT
A recent trend has emerged that involves myocardial injection of biomaterials, containing cells or acellular, following myocardial infarction (MI) to influence the remodeling response through both biological and mechanical effects. Despite the number of different materials injected in these approaches, there has been little investigation into the importance of material properties on therapeutic outcomes. This work focuses on the investigation of injectable hyaluronic acid (MeHA) hydrogels that have tunable mechanics and gelation behavior. Specifically, two MeHA formulations that exhibit similar degradation and tissue distribution upon injection but have differential moduli (approximately 8 versus approximately 43 kPa) were injected into a clinically relevant ovine MI model to evaluate the associated salutary effect of intramyocardial hydrogel injection on the remodeling response based on hydrogel mechanics. Treatment with both hydrogels significantly increased the wall thickness in the apex and basilar infarct regions compared with the control infarct. However, only the higher-modulus (MeHA High) treatment group had a statistically smaller infarct area compared with the control infarct group. Moreover, reductions in normalized end-diastolic and end-systolic volumes were observed for the MeHA High group. This group also tended to have better functional outcomes (cardiac output and ejection fraction) than the low-modulus (MeHA Low) and control infarct groups. This study provides fundamental information that can be used in the rational design of therapeutic materials for treatment of MI.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogel de Polietilenoglicol-Dimetacrilato / Remodelação Ventricular / Infarto do Miocárdio Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogel de Polietilenoglicol-Dimetacrilato / Remodelação Ventricular / Infarto do Miocárdio Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2010 Tipo de documento: Article